Big Data and Public Health: The Effectiveness of Health Interventions in Latin America

Authors

DOI:

https://doi.org/10.70577/h04n1a89

Keywords:

Big Data, indicators, interventions, mortality, public health.

Abstract

This study evaluates the effectiveness of public health interventions in Latin America through the use of Big Data and advanced statistical analysis. A time-series model and a Random Forest predictive algorithm were applied to a simulated database spanning multiple countries and intervention types, focusing on two key indicators: the overall mortality rate and the infant mortality rate. The results show stable patterns with moderate variability in both indicators and reveal that socioeconomic factor such as per capita income, educational level, and availability of health personnel are the main predictors. The analysis also demonstrates an interrelationship between the two mortality rates, suggesting that they should be addressed in an integrated manner. The study highlights the usefulness of Big Data for monitoring trends in real time, personalizing interventions, and improving the precision of public policies, in line with precision public health approaches. However, limitations associated with data quality, ethical challenges, and lack of institutional sustainability are recognized. The methodology implemented offers a solid foundation for future empirical studies aimed at optimizing resource allocation and improving equity in the region's health systems. The conclusion is that the strategic use of big data can transform healthcare management, provided it is accompanied by ethical frameworks, intersectoral policies, and local capacity building.

References

[1] Karatas, M., Eriskin, L., Deveci, M., Pamucar, D., & Garg, H. (2022). Big Data for Healthcare Industry 4.0: Applications, challenges and future perspectives. Expert Systems with Applications, 200, 116912. https://doi.org/10.1016/j.eswa.2022.116912

[2] Dolley, S. (2018). Big data’s role in precision public health. Frontiers in Public Health, 6, 68. https://doi.org/10.3389/fpubh.2018.00068

[3] Majnarić, L. T., Babič, F., O’Sullivan, S., & Holzinger, A. (2021). AI and big data in healthcare: towards a more comprehensive research framework for multimorbidity. Journal of Clinical Medicine, 10(4), 766. https://doi.org/10.3390/jcm10040766

[4] Vázquez, M.-L., Vargas, I., Unger, J.-P., De Paepe, P., Mogollón-Pérez, A. S., Samico, I., Albuquerque, P., Eguiguren, P., Cisneros, A. I., Rovere, M., & Bertolotto, F. (2015). Evaluating the effectiveness of care integration strategies in different healthcare systems in Latin America: The EQUITY-LA II quasi-experimental study protocol. BMJ Open, 5(7), e007037. https://doi.org/10.1136/bmjopen-2014-007037

[5] Kruse, C. S., Goswamy, R., Raval, Y., & Marawi, S. (2016). Challenges and opportunities of big data in health care: A systematic review. JMIR Medical Informatics, 4(4), e38. https://doi.org/10.2196/medinform.5359

[6] Batko, K., & Ślęzak, A. (2022). The use of Big Data Analytics in healthcare. Journal of big Data, 9(1), 3. https://doi.org/10.1186/s40537-021-00553-4

[7] Langlois, E. V., Mancuso, A., Elias, V., & Reveiz, L. (2019). Embedding implementation research to enhance health policy and systems: A multi-country analysis from ten settings in Latin America and the Caribbean. Health Research Policy and Systems, 17(1), 85. https://doi.org/10.1186/s12961-019-0484-4

[8] Vargas, I., Mogollón-Pérez, A.-S., Eguiguren, P., Samico, I., Bertolotto, F., López-Vázquez, J., Amarilla, D.-I., De Paepe, P., Vázquez, M.-L., for Equity-LA II, Puzzolo, J., Colautti, M., Aronna, A., Luppi, I., Muruaga, C., Leone, F., Rovere, M., Huerta, A., Alonso, C., … Ballarini, M.-N. (2023). Lessons learnt from the process of designing care coordination interventions through participatory action research in public healthcare networks of six Latin American countries. Health Research Policy and Systems, 21(1), 39. https://doi.org/10.1186/s12961-023-00985-9

[9] Luna, L. L. (2021). Salud pública y big data: COVID-19. Reflexión jurídica sobre la normativa de datos de salud y de aplicación de herramientas big data en el ámbito de la investigación biomédica y de la asistencia sanitaria. DS: Derecho y salud, 31(1), 6-21. https://dialnet.unirioja.es/servlet/articulo?codigo=8136584

[10] Copete, A. F. L., Martinez, L. R., & Gómez, D. A. R. (2023). Aplicación de big data en sistemas de salud pública. Publicaciones e Investigación, 17(1). https://doi.org/10.22490/25394088.6446

[11] Rosa, J. M., & Frutos, E. L. (2022). Ciencia de datos en salud: desafíos y oportunidades en América Latina. Revista Médica Clínica Las Condes, 33(6), 591-597. https://doi.org/10.1016/j.rmclc.2022.09.007

[12] Lasso Cardona, L. A., Franco Ocampo, D. F., & Estrada Esponda, R. D. (2022). Aplicaciones de la Datificación y Big Data en América Latina entre el 2015 y 2019. Revista Logos Ciencia & Tecnología, 14(2), 125-143 http://dx.doi.org/10.22335/rlct.v14i2.1594

[13] Curioso, W. H. (2019). Building capacity and training for digital health: Challenges and opportunities in latin america. Journal of Medical Internet Research, 21(12), e16513. https://doi.org/10.2196/16513

[14] Farias, M. A., Badino, M., Marti, M., Báscolo, E., García Saisó, S., & D’Agostino, M. (2023). La transformación digital como estrategia para el fortalecimiento de las funciones esenciales de salud pública en las Américas. Revista Panamericana de Salud Pública, 47, e150. http://dx.doi.org/10.26633/RPSP.2023.150

[15] Serna-Trejos, J. S., Bermúdez-Moyano, S. G., & Leon-Giraldo, H. (2023). Big Data en ciencias de la salud: Aspectos importantes: Big Data in health sciences: Important issues. Peruvian Journal of Health Care and Global Health, 7(1). https://revista.uch.edu.pe/index.php/hgh/article/view/228

[16] Guayasamín, L. G. S., Sarabia, C. A. S., Orozco, G. S. S., & Orellana, Z. M. R. (2024). Tendencias actuales en la epidemiología de enfermedades infecciosas emergentes: Lecciones aprendidas de la pandemia de COVID-19. Revista Imaginario Social, 7(3). https://doi.org/10.59155/is.v7i3.223

[17] Lu, W., Todhunter-Reid, A., Mitsdarffer, M. L., Muñoz-Laboy, M., Yoon, A. S., & Xu, L. (2021). Barriers and facilitators for mental health service use among racial/ethnic minority adolescents: a systematic review of literature. Frontiers in public health, 9, 641605. https://doi.org/10.3389/fpubh.2021.641605

[18] Chianumba, E. C., Ikhalea, N. U. R. A., Mustapha, A. Y., Forkuo, A. Y., & Osamika, D. A. M. I. L. O. L. A. (2021). A conceptual framework for leveraging big data and AI in enhancing healthcare delivery and public health policy. IRE Journals, 5(6), 303-310. https://www.researchgate.net/publication/390764695_A_Conceptual_Framework_for_Leveraging_Big_Data_and_AI_in_Enhancing_Healthcare_Delivery_and_Public_Health_Policy

[19] Bauskar, S. R., Madhavaram, C. R., Galla, E. P., Sunkara, J. R., & Gollangi, H. K. (2022). Predicting disease outbreaks using AI and Big Data: A new frontier in healthcare analytics. European Chemical Bulletin. Green Publication. https://doi. org/10.53555/ecb. v11: i12, 17745.

[20] McGill, E., Er, V., Penney, T., Egan, M., White, M., Meier, P., ... & Petticrew, M. (2021). Evaluation of public health interventions from a complex systems perspective: a research methods review. Social science & medicine, 272, 113697. https://doi.org/10.1016/j.socscimed.2021.113697

[21] Gomes, M., Murray, E., & Raftery, J. (2022). Economic evaluation of digital health interventions: methodological issues and recommendations for practice. Pharmacoeconomics, 40(4), 367-378. https://doi.org/10.1007/s40273-022-01130-0

[22] Klaic, M., Kapp, S., Hudson, P., Chapman, W., Denehy, L., Story, D., & Francis, J. J. (2022). Implementability of healthcare interventions: an overview of reviews and development of a conceptual framework. Implementation Science, 17(1), 10. http://dx.doi.org/10.1186/s13012-021-01171-7

[23] Gentili, A., Failla, G., Melnyk, A., Puleo, V., Tanna, G. L. D., Ricciardi, W., & Cascini, F. (2022). The cost-effectiveness of digital health interventions: a systematic review of the literature. Frontiers in Public Health, 10, 787135. https://doi.org/10.3389/fpubh.2022.787135

[24] Zah, V., Burrell, A., Asche, C., & Zrubka, Z. (2022). Paying for digital health interventions–what evidence is needed?. Acta Polytechnica Hungarica, 19(9), 179-199. http://dx.doi.org/10.12700/APH.19.9.2022.9.10

[25] Hassan, M., Awan, F. M., Naz, A., deAndrés-Galiana, E. J., Alvarez, O., Cernea, A., ... & Kloczkowski, A. (2022). Innovations in genomics and big data analytics for personalized medicine and health care: a review. International journal of molecular Sciences, 23(9), 4645. https://doi.org/10.3390/ijms23094645

[26] Norori, N., Hu, Q., Aellen, F. M., Faraci, F. D., & Tzovara, A. (2021). Addressing bias in big data and AI for health care: A call for open science. Patterns, 2(10). https://doi.org/10.1016/j.patter.2021.100347

[27] Atalla, M., Pinto, A. J., Mielke, G. I., Benatti, F. B., & Gualano, B. (2019). Impact of a real‐world lifestyle intervention in an entire latin american city with more than 50,000 people. Obesity, 27(12), 1967–1974. https://doi.org/10.1002/oby.22575

[28] Borges do Nascimento, I. J., Marcolino, M. S., Abdulazeem, H. M., Weerasekara, I., Azzopardi-Muscat, N., Gonçalves, M. A., & Novillo-Ortiz, D. (2021). Impact of big data analytics on people’s health: Overview of systematic reviews and recommendations for future studies. Journal of medical Internet research, 23(4), e27275. http://dx.doi.org/10.2196/27275

[29] Sreedevi, A. G., Harshitha, T. N., Sugumaran, V., & Shankar, P. (2022). Application of cognitive computing in healthcare, cybersecurity, big data and IoT: A literature review. Information Processing & Management, 59(2), 102888. http://dx.doi.org/10.1016/j.ipm.2022.102888

[30] Cozzoli, N., Salvatore, F. P., Faccilongo, N., & Milone, M. (2022). How can big data analytics be used for healthcare organization management? Literary framework and future research from a systematic review. BMC health services research, 22(1), 809. https://doi.org/10.1186/s12913-022-08167-z

[31] Iyamu, I., Gómez-Ramírez, O., Xu, A. X., Chang, H. J., Watt, S., Mckee, G., & Gilbert, M. (2022). Challenges in the development of digital public health interventions and mapped solutions: findings from a scoping review. Digital health, 8, 20552076221102255. https://doi.org/10.1177/20552076221102255

[32] Molina, Y., Iglesias, J. G., & Montesinos, L. (2024). A data-driven approach on COVID-19 restrictions and its effectiveness in Latin America. 2024 IEEE 37th International Symposium on Computer-Based Medical Systems (CBMS), 176–181. https://doi.org/10.1109/CBMS61543.2024.00037

[33] Espinel-Flores, V., Vargas, I., Samico, I., Eguiguren, P., Mogollón-Pérez, A., López, J., Bertolotto, F., & Vázquez Navarrete, M. L. (2020). Effectiveness of interventions related to continuity of health care in five Latin America countries. European Journal of Public Health, 30(Supplement_5), ckaa166.513. https://doi.org/10.1093/eurpub/ckaa166.513

[34] Read, A., Lutgens, D., & Malla, A. (2023). A descriptive overview of mental health services offered in post-secondary educational institutions across Canada. The Canadian Journal of Psychiatry, 68(2), 101-108. https://doi.org/10.1177/07067437221128168

[35] Utomo, J., Rukmana, A. Y., Andarmoyo, S., & Anurogo, D. (2023). The Effect of Education, Income, and Access to Health Services on the Quality of Life of the Elderly in West Java. West Science Social and Humanities Studies, 1(05), 227-235. https://pdfs.semanticscholar.org/a8e6/b6260c73e67afa73c2228d50a679e0fd6402.pdf

[36] Valery, P. C., Bernardes, C. M., Hayward, K. L., Hartel, G., Haynes, K., Gordon, L. G., ... & Powell, E. E. (2022). Poor disease knowledge is associated with higher healthcare service use and costs among patients with cirrhosis: an exploratory study. BMC gastroenterology, 22(1), 340. https://doi.org/10.1186/s12876-022-02407-6

[37] Karam, M., Chouinard, M. C., Poitras, M. E., Couturier, Y., Vedel, I., Grgurevic, N., & Hudon, C. (2021). Nursing care coordination for patients with complex needs in primary healthcare: a scoping review. International journal of integrated care, 21(1), 16. https://doi.org/10.5334/ijic.5518

[38] Swan, D., & Connolly, D. (2023). Driving improvements in the quality, safety, consistency and coordination of care and support for children using health and social care services, through the collaborative development of national standards. International Journal of Integrated Care, 23(S1). http://dx.doi.org/10.5334/ijic.ICIC23208

[39] Liow, M. H. L., Lee, L. C., Tan, N. C. K., Tan, H. K., Chow, W., Wee, G. L. E., ... & Ling, M. L. (2022). Personal protective equipment training for non-healthcare workers in the Covid-19 pandemic: effectiveness of an evidence-based skills training framework. Infection, disease & health, 27(1), 38-48. https://doi.org/10.1016/j.idh.2021.09.040

[40] Nekar, D. M., Kang, H., Alao, H., & Yu, J. (2022). Feasibility of using multiplayer game-based dual-task training with augmented reality and personal health record on social skills and cognitive function in children with autism. Children, 9(9), 1398. https://doi.org/10.3390/children9091398

[41] Du, G., Liu, Z., & Lu, H. (2021). Application of innovative risk early warning mode under big data technology in Internet credit financial risk assessment. Journal of Computational and Applied Mathematics, 386, 113260. http://dx.doi.org/10.1016/j.cam.2020.113260

Contribución de los Autores Individuales en la Elaboración de un Artículo Científico (Po-lítica de Ghostwriting)

Todos los autores participaron equitativamente del desarrollo del artículo.

Fuentes de Financiamiento para la Investiga-ción Presentada en el Artículo Científico o para el Artículo Científico en sí

No se recibió financiación para la realización de este estudio.

Conflicto de Intereses

Los autores declaran no tener ningún conflicto de interés relevante con el contenido de este artículo.

Licencia de Atribución de Creative Com-mons 4.0 (Atribución 4.0 Internacional, CC BY 4.0)

Este artículo se publica bajo los términos de la Licencia de Atribución de Creative Commons 4.0.

https://creativecommons.org/licenses/by/4.0/deed.es

Published

2024-06-15

How to Cite

Big Data and Public Health: The Effectiveness of Health Interventions in Latin America. (2024). Innovación Integral, 1(2), 1-13. https://doi.org/10.70577/h04n1a89