Inteligencia Artificial para la Optimización de Redes Eléctricas en Latinoamérica
DOI:
https://doi.org/10.70577/213ara83Palabras clave:
Inteligencia Artificial , Machine Laerning, Modelos, Optimización, Redes.Resumen
El artículo explora la transformación de las redes eléctricas en América Latina mediante la integración de la inteligencia artificial (IA). Ante una demanda energética que se triplicará para 2050, la IA se vuelve crucial para optimizar la eficiencia, confiabilidad e integración de energías renovables. Países como Brasil, México y Chile lideran esta adopción, utilizando IA para gestionar la distribución, equilibrar la oferta y demanda, y mejorar la fiabilidad de la red.El estudio destaca que los modelos de regresión lineal predicen la eficiencia energética con alta precisión (R2 =0.86), influenciados por el consumo, generación y condiciones meteorológicas. Los modelos de clasificación de optimización alcanzan una precisión cercana al 100% , mientras que la clasificación de riesgo muestra resultados mixtos, con dificultades en clases minoritarias, sugiriendo la necesidad de balanceo de datos. El clustering K-Means identificó tres segmentos geográficos de la red con distintas características operativas y de mantenimiento. Los modelos ARIMA y LSTM demuestran una robusta capacidad para predecir la demanda y el consumo energético, capturando patrones temporales complejos. La optimización lineal demostró un balance efectivo en la distribución de energía entre diversas fuentes, y se identificó el potencial de algoritmos heurísticos para futuras mejoras.A pesar de los desafíos como el desequilibrio de clases en los datos de riesgo, la necesidad de modelos de predicción de fallas más robustos y la integración dinámica de datos, la IA ofrece un camino prometedor hacia redes más eficientes, resilientes y con mayor satisfacción del cliente.
Referencias
[1] Mukhamediev, R. I., Popova, Y., Kuchin, Y., Zaitseva, E., Kalimoldayev, A., Symagulov, A., ... & Yelis, M. (2022). Review of artificial intelligence and machine learning technologies: Classification, restrictions, opportunities and challenges. Mathematics, 10(15), 2552. https://doi.org/10.3390/math10152552
[2] Suman, A. (2021). Role of renewable energy technologies in climate change adaptation and mitigation: A brief review from Nepal. Renewable and Sustainable Energy Reviews, 151, 111524. https://doi.org/10.1016/j.rser.2021.111524
[3] Beltrán Gallego, J. D., Quintero Ríos, M., López García, D., & Carvajal Quintero, S. X. (2022). Energy Management Systems in Latin American Industry: Case Study Colombia. TecnoLógicas, 25(54). http://dx.doi.org/10.22430/22565337.2379
[4] Greenstein, S. (2022). Preserving the rule of law in the era of artificial intelligence (AI). Artificial Intelligence and Law, 30(3), 291-323. https://link.springer.com/article/10.1007/s10506-021-09294-4
[5] Entezari, A., Aslani, A., Zahedi, R., & Noorollahi, Y. (2023). Artificial intelligence and machine learning in energy systems: A bibliographic perspective. Energy Strategy Reviews, 45, 101017. https://doi.org/10.1016/j.esr.2022.101017
[6] Naik, N., Hameed, B. M., Shetty, D. K., Swain, D., Shah, M., Paul, R., ... & Somani, B. K. (2022). Legal and ethical consideration in artificial intelligence in healthcare: who takes responsibility?. Frontiers in surgery, 9, 862322. http://dx.doi.org/10.3389/fsurg.2022.862322
[7] Gallegos, J., Arévalo, P., Montaleza, C., & Jurado, F. (2024). Sustainable electrification—advances and challenges in electrical-distribution networks: a review. Sustainability, 16(2), 698. https://doi.org/10.3390/su16020698
[8] Mbungu, N. T., Ismail, A. A., AlShabi, M., Bansal, R. C., Elnady, A., & Hamid, A. K. (2023). Control and estimation techniques applied to smart microgrids: A review. Renewable and Sustainable Energy Reviews, 179, 113251. https://doi.org/10.1016/j.rser.2023.113251
[9] Liu, Z., Gao, Y., & Liu, B. (2022). An artificial intelligence-based electric multiple units using a smart power grid system. Energy Reports, 8, 13376-13388. https://doi.org/10.1016/j.egyr.2022.09.138
[10] Kong, L., Tan, J., Huang, J., Chen, G., Wang, S., Jin, X., ... & Das, S. K. (2022). Edge-computing-driven internet of things: A survey. ACM Computing Surveys, 55(8), 1-41. http://dx.doi.org/10.1109/JIOT.2022.3200431
[11] Lu, S., Lu, J., An, K., Wang, X., & He, Q. (2023). Edge computing on IoT for machine signal processing and fault diagnosis: A review. IEEE Internet of Things Journal, 10(13), 11093-11116. https://ieeexplore.ieee.org/document/10026418
[12] Gehrke, P., Goretti, A. A. T., & Avila, L. V. (2021). Impactos da matriz energética no desenvolvimento sustentável do Brasil. Revista de Administração da UFSM, 14, 1032-1049. http://dx.doi.org/10.5902/1983465964409
[13] Bhattarai, T. N., Ghimire, S., Mainali, B., Gorjian, S., Treichel, H., & Paudel, S. R. (2023). Applications of smart grid technology in Nepal: status, challenges, and opportunities. Environmental Science and Pollution Research, 30(10), 25452-25476. https://doi.org/10.1007/s11356-022-19084-3
[14] Mazhar, T., Irfan, H. M., Haq, I., Ullah, I., Ashraf, M., Shloul, T. A., ... & Elkamchouchi, D. H. (2023). Analysis of challenges and solutions of IoT in smart grids using AI and machine learning techniques: A review. Electronics, 12(1), 242. https://doi.org/10.3390/electronics12010242
[15] Icaza-Alvarez, D., Jurado, F., & Tostado-Véliz, M. (2024). Smart energy planning for the decarbonization of Latin America and the Caribbean in 2050. Energy Reports, 11, 6160-6185. https://doi.org/10.1016/j.egyr.2024.05.067
[16] Lage, M., & Castro, R. (2022). A practical review of the public policies used to promote the implementation of pv technology in smart grids: the case of portugal. Energies, 15(10), 3567. http://dx.doi.org/10.3390/en15103567
[17] Guo, C., Luo, F., Cai, Z., & Dong, Z. Y. (2021). Integrated energy systems of data centers and smart grids: State-of-the-art and future opportunities. Applied Energy, 301, 117474. https://doi.org/10.1016/j.apenergy.2021.117474
[18] Niet, I. A., Dekker, R., & van Est, R. (2022). Seeking public values of digital energy platforms. Science, Technology, & Human Values, 47(3), 380-403. http://dx.doi.org/10.1177/01622439211054430
[19] Li, Y., & Yan, J. (2022). Cybersecurity of smart inverters in the smart grid: A survey. IEEE Transactions on Power Electronics, 38(2), 2364-2383. https://ieeexplore.ieee.org/document/9889215
[20] Mohammadi, F. (2021). Emerging challenges in smart grid cybersecurity enhancement: A review. Energies, 14(5), 1380. https://doi.org/10.3390/en14051380
[21] Kumar, P., Chauhan, S., & Awasthi, L. K. (2023). Artificial intelligence in healthcare: review, ethics, trust challenges & future research directions. Engineering Applications of Artificial Intelligence, 120, 105894. https://doi.org/10.1016/j.engappai.2023.105894
[22] Pimenow, S., Pimenowa, O., & Prus, P. (2024). Challenges of artificial intelligence development in the context of energy consumption and impact on climate change. Energies, 17(23), 5965. https://doi.org/10.3390/en17235965
[23] Zhang, Y., Teoh, B. K., Wu, M., Chen, J., & Zhang, L. (2023). Data-driven estimation of building energy consumption and GHG emissions using explainable artificial intelligence. Energy, 262, 1 https://doi.org/10.1016/j.energy.2022.125468
[24] Fernández-Miranda, M., Román-Acosta, D., Jurado-Rosas, A. A., Limón-Dominguez, D., & Torres-Fernández, C. (2024). Artificial intelligence in Latin American universities: Emerging challenges. Computación y Sistemas, 28(2), 435-450. https://doi.org/10.13053/cys-28-2-4822
[25] Sahani, N., Zhu, R., Cho, J. H., & Liu, C. C. (2023). Machine learning-based intrusion detection for smart grid computing: A survey. ACM Transactions on Cyber-Physical Systems, 7(2), 1-31. http://dx.doi.org/10.1145/3578366
[26] Bashir, A. K., Khan, S., Prabadevi, B., Deepa, N., Alnumay, W. S., Gadekallu, T. R., & Maddikunta, P. K. R. (2021). Comparative analysis of machine learning algorithms for prediction of smart grid stability. International Transactions on Electrical Energy Systems, 31(9), e12706. http://dx.doi.org/10.1002/2050-7038.12706
[27] Mostafa, N., Ramadan, H. S. M., & Elfarouk, O. (2022). Renewable energy management in smart grids by using big data analytics and machine learning. Machine Learning with Applications, 9, 100363. https://doi.org/10.1016/j.mlwa.2022.100363
[28] Yan, Z., & Wen, H. (2021). Performance analysis of electricity theft detection for the smart grid: An overview. IEEE Transactions on Instrumentation and Measurement, 71, 1-28. http://dx.doi.org/10.1109/TIM.2021.3127649
[29] Geng, Y., Zhang, N., & Zhu, R. (2023). Research progress analysis of sustainable smart grid based on CiteSpace. Energy Strategy Reviews, 48, 101111. https://doi.org/10.1016/j.esr.2023.101111
[30] Xia, W., Jiang, Y., Chen, X., & Zhao, R. (2022). Application of machine learning algorithms in municipal solid waste management: A mini review. Waste Management & Research, 40(6), 609-624. http://dx.doi.org/10.1177/0734242X211033716
[31] Khalid, M. (2024). Smart grids and renewable energy systems: Perspectives and grid integration challenges. Energy Strategy Reviews, 51, 101299. https://doi.org/10.1016/j.esr.2024.101299
[32] Omitaomu, O. A., & Niu, H. (2021). Artificial intelligence techniques in smart grid: A survey. Smart Cities, 4(2), 548-568. https://doi.org/10.3390/smartcities4020029
[33] Lamnatou, C., Chemisana, D., & Cristofari, C. (2022). Smart grids and smart technologies in relation to photovoltaics, storage systems, buildings and the environment. Renewable Energy, 185, 1376-1391. https://doi.org/10.1016/j.renene.2021.11.019
[34] Berdugo-Sarmiento, K., Silva-Ortega, J., & Eras, J. J. C. (2024). Electricity Public Service Quality Management in Colombia. In 2024 9th International Engineering, Sciences and Technology Conference (IESTEC) (pp. 587-592). IEEE. http://dx.doi.org/10.1109/IESTEC62784.2024.10820198
[35] Mohiddin, M. K., Kohli, R., Dutt, V. S. I., Dixit, P., & Michal, G. (2021). Energy‐Efficient Enhancement for the Prediction‐Based Scheduling Algorithm for the Improvement of Network Lifetime in WSNs. Wireless Communications and Mobile Computing, 2021(1), 9601078. http://dx.doi.org/10.1155/2021/9601078
[36] Aghsaee, R., Hecht, C., Schwinger, F., Figgener, J., Jarke, M., & Sauer, D. U. (2023). Data-driven, short-term prediction of charging station occupation. Electricity, 4(2), 134-153. https://doi.org/10.3390/electricity4020009
[37] Shern, S. J., Sarker, M. T., Haram, M. H. S. M., Ramasamy, G., Thiagarajah, S. P., & Al Farid, F. (2024). Artificial Intelligence Optimization for User Prediction and Efficient Energy Distribution in Electric Vehicle Smart Charging Systems. Energies, 17(22), 5772. https://doi.org/10.3390/en17225772
[38] Kaur, R., Gabrijelčič, D., & Klobučar, T. (2023). Artificial intelligence for cybersecurity: Literature review and future research directions. Information Fusion, 97, 101804. https://doi.org/10.1016/j.inffus.2023.101804
[39] Paret, P., Finegan, D., & Narumanchi, S. (2023). Artificial intelligence for power electronics in electric vehicles: challenges and opportunities. Journal of Electronic Packaging, 145(3), 034501. https://doi.org/10.1115/1.4056306
[40] Arévalo, P., Ochoa-Correa, D., & Villa-Ávila, E. (2024). A systematic review on the integration of artificial intelligence into energy management systems for electric vehicles: Recent advances and future perspectives. World Electric Vehicle Journal, 15(8), 364. https://doi.org/10.3390/wevj15080364
[41] Mhlanga, D. (2023). Artificial intelligence and machine learning for energy consumption and production in emerging markets: a review. Energies, 16(2), 745. https://doi.org/10.3390/en16020745
[42] Wang, Q., Zhang, F., Li, R., & Sun, J. (2024). Does artificial intelligence promote energy transition and curb carbon emissions? The role of trade openness. Journal of Cleaner Production, 447, 141298. https://doi.org/10.1016/j.jclepro.2024.141298
[43] Yao, Z., Lum, Y., Johnston, A., Mejia-Mendoza, L. M., Zhou, X., Wen, Y., ... & Seh, Z. W. (2023). Machine learning for a sustainable energy future. Nature Reviews Materials, 8(3), 202-215. https://doi.org/10.1038/s41578-022-00490-5
[44] Liu, Y., Chen, H., Zhang, L., & Feng, Z. (2021). Enhancing building energy efficiency using a random forest model: A hybrid prediction approach. Energy Reports, 7, 5003-5012. https://doi.org/10.1016/j.egyr.2021.07.135
45] Nie, P., Roccotelli, M., Fanti, M. P., Ming, Z., & Li, Z. (2021). Prediction of home energy consumption based on gradient boosting regression tree. Energy Reports, 7, 1246-1255. https://doi.org/10.1016/j.egyr.2021.02.006
[46] Miraftabzadeh, S. M., Colombo, C. G., Longo, M., & Foiadelli, F. (2023). K-means and alternative clustering methods in modern power systems. Ieee Access, 11, 119596-119633. http://dx.doi.org/10.1109/ACCESS.2023.3327640
[47] Pierre, A. A., Akim, S. A., Semenyo, A. K., & Babiga, B. (2023). Peak electrical energy consumption prediction by ARIMA, LSTM, GRU, ARIMA-LSTM and ARIMA-GRU approaches. Energies, 16(12), 4739. https://doi.org/10.3390/en16124739
[48] Prattico, D., Laganá, F., Oliva, G., Fiorillo, A. S., Pullano, S. A., Calcagno, S., ... & La Foresta, F. (2024, July). Sensors and Integrated Electronic Circuits for Monitoring Machinery On Wastewater Treatment: Artificial Intelligence Approach. In 2024 IEEE Sensors Applications Symposium (SAS) (pp. 1-6).
IEEE. https://scholar.google.com/citations?user=ccruDcsAAAAJ&hl=it
Descargas
Publicado
Número
Sección
Licencia
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
Bajo los siguientes términos:
- Atribución — Usted debe dar crédito de manera adecuada , brindar un enlace a la licencia, e indicar si se han realizado cambios . Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
- NoComercial — Usted no puede hacer uso del material con propósitos comerciales .
- SinDerivadas — Si remezcla, transforma o crea a partir del material, no podrá distribuir el material modificado.
- No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.