Inteligencia artificial y Big Data: Transformando la educación superior en América latina
DOI:
https://doi.org/10.70577/xf92ng40Palabras clave:
Aprendizaje, Inteligencia Artificial, Big Data, Educación Superior, Empleabilidad.Resumen
Este estudio analizó el impacto de la Inteligencia Artificial (IA) y el Big Data en la transformación de la educación superior en América Latina, identificando oportunidades, desafíos y mejores prácticas. Se encontró que la IA influye positivamente en el rendimiento académico estudiantil, la eficiencia operacional y la empleabilidad de los egresados, con coeficientes significativos. Una infraestructura tecnológica excelente es crucial para maximizar estos beneficios. Sin embargo, los resultados revelaron un impacto negativo inesperado de la IA y el volumen de datos en la personalización del aprendizaje, sugiriendo que la mera acumulación de datos o estrategias de personalización actuales podrían ser ineficaces. La robustez estadística de los hallazgos fue confirmada por altos R-cuadrados ajustados y P-valores significativos. En conclusión, la IA es un motor de optimización y mejora en varios frentes educativos, pero su implementación en la personalización y la gestión del Big Data requiere un enfoque más estratégico y refinado. Para una transformación efectiva, las instituciones deben enfocarse en una infraestructura robusta, adaptar la IA a necesidades pedagógicas reales y priorizar la calidad sobre la cantidad de datos.
Referencias
[1] Salas-Pilco, S. Z., & Yang, Y. (2022). Artificial intelligence applications in Latin American higher education: A systematic review. International Journal of Educational Technology in Higher Education, 19(1), 21. https://doi.org/10.1186/s41239-022-00326-w
[2] Özsezer, G., & Mermer, G. (2022). Using artificial intelligence in the COVID-19 Pandemic: A systematic review. Acta Medica Iranica, 387-397. http://dx.doi.org/10.18502/acta.v60i7.10208
[3] Tian, Y., Zhu, W., Zhang, X., & Jin, Y. (2023). A practical tutorial on solving optimization problems via PlatEMO. Neurocomputing, 518, 190-205. https://doi.org/10.1016/j.neucom.2022.10.075
[4] Kamalov, F., Santandreu Calonge, D., & Gurrib, I. (2023). New era of artificial intelligence in education: Towards a sustainable multifaceted revolution. Sustainability, 15(16), 12451. https://doi.org/10.3390/su151612451
[5] Cruz Zuniga, M., Santrac, N., Kwiatkowski, A., & Abood, B. (2024). What do college students think about artificial intelligence? We ask them. Journal of Integrated Global STEM, 1(1), 33–40. https://doi.org/10.1515/jigs-2024-0005
[6] Zhai, X., Chu, X., Chai, C. S., Jong, M. S. Y., Istenic, A., Spector, M., ... & Li, Y. (2021). A Review of Artificial Intelligence (AI) in Education from 2010 to 2020. Complexity, 2021(1), 8812542. http://dx.doi.org/10.1155/2021/8812542
[7] Barakina, E. Y., Popova, A. V., Gorokhova, S. S., & Voskovskaya, A. S. (2021). Digital Technologies and Artificial Intelligence Technologies in Education. European Journal of Contemporary Education, 10(2), 285-296. https://eric.ed.gov/?id=EJ1311498
[8] Cerdá Suárez, L. M., Núñez-Valdés, K., & Quirós y Alpera, S. (2021). A systemic perspective for understanding digital transformation in higher education: Overview and subregional context in Latin America as evidence. Sustainability, 13(23), 12956. https://doi.org/10.3390/su132312956
[9] Rodríguez-Alegre, L. R., Calderón-De-Los-Ríos, H., Hurtado-Zamora, M. M., & Ocaña-Rodríguez, Á. W. (2023). Inteligencia artificial en la gestión organizacional: Impacto y realidad latinoamericana. Revista Arbitrada Interdisciplinaria Koinonía, 8, 226-241. http://dx.doi.org/10.35381/r.k.v8i1.2782
[10] De La Torre, A., & Baldeon-Calisto, M. (2024). Generative artificial intelligence in latin american higher education: A systematic literature review. 2024 12th International Symposium on Digital Forensics and Security (ISDFS), 1–7. https://doi.org/10.1109/ISDFS60797.2024.10527283
[11] D’Alva, O. A., & Paraná, E. (2024). Official statistics and big data in Latin America: Data enclosures and counter-movements. Big Data & Society, 11(1), 20539517241229696. http://dx.doi.org/10.1177/20539517241229696
[12] Cornejo, J., Barrera, S., Ruiz, C. H., Gutiérrez, F., Casasnovas, M. O., Kot, L., ... & L'huillier, E. A. (2023). Industrial, collaborative and mo-bile robotics in Latin America: Review of mech-atronic technologies for advanced automa-tion. Emerging Science Journal, 7(4), 1430-1458. http://dx.doi.org/10.28991/ESJ-2023-07-04-025
[13] Lin, C. C., Huang, A. Y., & Lu, O. H. (2023). Artificial intelligence in intelligent tutoring systems toward sustainable education: a systematic review. Smart Learning Environments, 10(1), 41. http://dx.doi.org/10.1186/s40561-023-00260-y
[14] Ouyang, F., Dinh, T. A., & Xu, W. (2023). A systematic review of AI-driven educational assessment in STEM education. Journal for STEM Education Research, 6(3), 408-426. http://dx.doi.org/10.1007/s41979-023-00112-x
[15] Bu, K., Liu, Y., & Ju, X. (2024). Efficient utilization of pre-trained models: A review of sentiment analysis via prompt learning. Knowledge-Based Systems, 283, 111148. https://dl.acm.org/doi/abs/10.1016/j.knosys.2023.111148
[16] Flores Jaramillo, J. D., & Nuñez Olivera, N. R. (2024). Aplicación de inteligencia artificial en la educación de américa latina: Tendencias, beneficios y desafíos. Revista Veritas de Difusão Científica, 5(1), 01–21. https://doi.org/10.61616/rvdc.v5i1.52
[17] Nasim, S. F., Ali, M. R., & Kulsoom, U. (2022). Artificial intelligence incidents & ethics a narrative review. International Journal of Technology Innovation and Management (IJTIM), 2(2), 52-64. http://dx.doi.org/10.54489/ijtim.v2i2.80
[18] Huang, C., Zhang, Z., Mao, B., & Yao, X. (2022). An overview of artificial intelligence ethics. IEEE Transactions on Artificial Intelligence, 4(4), 799-819. http://dx.doi.org/10.1109/TAI.2022.3194503
[19] Kasun, G. S., Liao, Y.-C., Margulieux, L. E., & Woodall, M. (2024). Unexpected outcomes from an AI education course among education faculty: Toward making AI accessible with marginalized youth in urban Mexico. Frontiers in Education, 9, 1368604. https://doi.org/10.3389/feduc.2024.1368604
[20] Palle, R. R., & Kathala, K. C. R. (2024). AI in Data Privacy and Ethics. In Privacy in the Age of Innovation: AI Solutions for Information Security (pp. 111-118). Berkeley, CA: Apress. http://dx.doi.org/10.1007/979-8-8688-0461-8_9
[21] Yang, E., & Beil, C. (2024). Ensuring data privacy in AI/ML implementation. New Directions for Higher Education, 2024(207), 63-78. https://doi.org/10.1002/he.20509
[22] Lee, C. S., Cheang, P. Y. S., & Moslehpour, M. (2022). Predictive analytics in business analytics: decision tree. Advances in Decision Sciences, 26(1), 1-29. http://dx.doi.org/10.47654/v26y2022i1p1-30
[23] Shafiq, D. A., Marjani, M., Habeeb, R. A. A., & Asirvatham, D. (2022). Student retention using educational data mining and predictive analytics: a systematic literature review. IEEE Access, 10, 72480-72503. http://dx.doi.org/10.1109/ACCESS.2022.3188767
[24] Teichert, L., Anderson, J., Anderson, A., Hare, J., & McTavish, M. (2021). Access and use of digital technologies in early childhood: A review of mixed messages in popular media. Language and Literacy, 23(3), 106-128. http://dx.doi.org/10.20360/langandlit29546
[25] Guerrero-Quiñonez, A. J., Bedoya-Flores, M. C., Mosquera-Quiñonez, E. F., Mesías-Simisterra, Á. E., & Bautista-Sánchez, J. V. (2023). Artificial Intelligence and its scope in Latin American higher education. Ibero-American Journal of Education & Society Research, 3(1), 264–271. https://doi.org/10.56183/iberoeds.v3i1.627
[26] Crompton, H., & Burke, D. (2023). Artificial intelligence in higher education: The state of the field. International Journal of Educational Technology in Higher Education, 20(1), 22. https://doi.org/10.1186/s41239-023-00392-8
[27] Montecé Mosquera, F. W., Esteves Fajardo, Z. I., Pizarro Vargas, V. J., Guamán Hernández, V. A., Alarcón Salvatierra, P. A., Chiriboga Posligua, M. F., Jurado Ronquillo, M. C., Núñez Núñez, M. A., Wila Ayovi, A. W., & Segura Villamar, F. I. (2024). La IA. Un entorno educativo en América Latina (1st ed.). Mawil Publicaciones de Ecuador, 2024. https://doi.org/10.26820/978-9942-654-14-4
[28] Savari, G. F., Sathik, M. J., Raman, L. A., El-Shahat, A., Hasanien, H. M., Almakhles, D., ... & Omar, A. I. (2023). Assessment of charging technologies, infrastructure and charging station recommendation schemes of electric vehicles: A review. Ain Shams Engineering Journal, 14(4), 101938. https://doi.org/10.1016/j.asej.2022.101938
[29] Bin Eid, A., Almutairi, M., Alzahrani, A., Alomair, F., Albinhamad, A., Albarrak, Y., ... & Bin Abdulrahman, K. (2021). Examining learning styles with gender comparison among medical students of a Saudi University. Advances in Medical Education and Practice, 309-318. http://dx.doi.org/10.2147/AMEP.S295058
[30] Machado, I. A., Costa, C., & Santos, M. Y. (2022). Data mesh: concepts and principles of a paradigm shift in data architectures. Procedia Computer Science, 196, 263-271. https://doi.org/10.1016/j.procs.2021.12.013
[31] Reda Taha, M., Ayyub, B. M., Soga, K., Daghash, S., Heras Murcia, D., Moreu, F., & Soliman, E. (2021). Emerging technologies for resilient infrastructure: Conspectus and roadmap. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 7(2), 03121002. https://www.researchgate.net/publication/350121828_Emerging_Technologies_for_Resilient_Infrastructure_Conspectus_and_Roadmap
[32] Vrontis, D., Christofi, M., Pereira, V., Tarba, S., Makrides, A., & Trichina, E. (2023). Artificial intelligence, robotics, advanced technologies and human resource management: a systematic review. Artificial intelligence and international HRM, 172-201. http://dx.doi.org/10.1080/09585192.2020.1871398
[33] Lim, H. W., & Kim, S. J. (2021). A study on ways to make employment improve through Big Data analysis of university information public. International Journal of Advanced Culture Technology, 9(3), 174-180. https://doi.org/10.17703/IJACT.2021.9.3.174
Contribución de los Autores Individuales en la Elaboración de un Artículo Científico (Po-lítica de Ghostwriting)
Todos los autores participaron equitativamente del desarrollo del artículo.
Fuentes de Financiamiento para la Investiga-ción Presentada en el Artículo Científico o para el Artículo Científico en sí
No se recibió financiación para la realización de este estudio.
Conflicto de Intereses
Los autores declaran no tener ningún conflicto de interés relevante con el contenido de este artículo.
Licencia de Atribución de Creative Com-mons 4.0 (Atribución 4.0 Internacional, CC BY 4.0)
Este artículo se publica bajo los términos de la Licencia de Atribución de Creative Commons 4.0
Descargas
Publicado
Número
Sección
Licencia
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
Bajo los siguientes términos:
- Atribución — Usted debe dar crédito de manera adecuada , brindar un enlace a la licencia, e indicar si se han realizado cambios . Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
- NoComercial — Usted no puede hacer uso del material con propósitos comerciales .
- SinDerivadas — Si remezcla, transforma o crea a partir del material, no podrá distribuir el material modificado.
- No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.