Inteligencia Artificial para la planificación urbana en Latinoamérica

Authors

DOI:

https://doi.org/10.70577/eag5rs05

Keywords:

Cluster, Datos, Geoespacial, Planificación, Urbanismos.

Abstract

La planificación urbana en América Latina enfrenta desafíos significativos debido al rápido crecimiento urbano, la desigualdad socioeconómica y la vulnerabilidad ambiental. Con más del 80% de su población viviendo en zonas urbanas y una proyección del 90% para 2050, es fundamental optimizar la distribución de recursos y mejorar los servicios públicos mediante enfoques basados en datos. Este artículo propone el uso de algoritmos de clustering como herramientas clave para identificar áreas homogéneas dentro de las ciudades, facilitando una planificación más equitativa y sostenible. Mediante técnicas de ciencia de datos, como K-means y DBSCAN, se analizan indicadores urbanos agrupados en tres dimensiones: infraestructura (acceso a agua, electricidad, transporte), socioeconómica (ingresos, educación, salud) y territorial (uso del suelo, espacios verdes). Estos métodos permiten segmentar áreas críticas, como asentamientos informales o zonas con déficit de infraestructura, mejorando la toma de decisiones en políticas públicas. El análisis se apoya en un conjunto de datos sintético de 5000 registros, generado con distribuciones estadísticas realistas basadas en estudios recientes. Se aplican técnicas avanzadas como PCA para reducir dimensionalidad, normalización de variables y métricas de validación como el índice de Calinski-Harabasz. Los resultados muestran una estructura urbana bipolar con dos clusters bien definidos por K-means, mientras que DBSCAN identifica múltiples zonas de transición y ruido espacial, típico de contextos urbanos dinámicos e informales, por lo que se conluye que la  combinación de clustering, análisis geoespacial y estrategias basadas en datos ofrece una metodología robusta para guiar políticas urbanas en América Latina, promoviendo la equidad y la resiliencia frente al cambio climático.

References

[1] Son, T. H., Weedon, Z., Yigitcanlar, T., Sanchez, T., Corchado, J. M., & Mehmood, R. (2023). Algorithmic urban planning for smart and sustainable development: Systematic review of the literature. Sustainable Cities and Society, 94, 104562. https://doi.org/10.1016/j.scs.2023.104562

[2] Sanchez, T. W., Shumway, H., Gordner, T., & Lim, T. (2023). The prospects of artificial intelligence in urban planning. International journal of urban sciences, 27(2), 179-194. http://dx.doi.org/10.1080/12265934.2022.2102538

[3] Do Nascimento, A. C. L., Galvani, E., Gobo, J. P. A., & Wollmann, C. A. (2022). Comparison between air temperature and land surface temperature for the city of São Paulo, Brazil. Atmosphere, 13(3), 491. https://doi.org/10.3390/atmos13030491

[4] Junta, U., Newiduom, L., Opuiyo, A., & Browndi, I. (2022). Predictive analysis of urban planning for through the operation of artificial cloud network. International Journal of Science and Advanced Technology, 62(2022), 622-627. https://isi.ac/storage/article-files/6LuYzVzjMZ0mxAUYgoDFjoH1wObqmvqsCFSuK1qz.pdf

[5] Ogas-Mendez, A. F., Pei, X., & Isoda, Y. (2022). Squatting behavior during the COVID-19 pandemic: The case of the informal settlement “Los Hornos” in Buenos Aires. Habitat International, 130, 102688. https://doi.org/10.1016/j.habitatint.2022.102688

[6] Gan, W., Zhao, Z., Wang, Y., Zou, Y., Zhou, S., & Wu, Z. (2024). UDGAN: A new urban design inspiration approach driven by using generative adversarial networks. Journal of Computational Design and Engineering, 11(1), 305-324. http://dx.doi.org/10.1093/jcde/qwae014

[7] Cook, M., & Karvonen, A. (2024). Urban planning and the knowledge politics of the smart city. Urban Studies, 61(2), 370-382. https://journals.sagepub.com/doi/10.1177/00420980231177688

[8] Cheng, W., Chu, Y., Xia, C., Zhang, B., Chen, J., Jia, M., & Wang, W. (2023). UrbanGenoGAN: pioneering urban spatial planning using the synergistic integration of GAN, GA, and GIS. Frontiers in Environmental Science, 11, 1287858. http://dx.doi.org/10.3389/fenvs.2023.1287858

[9] Silva, C., & Vergara-Perucich, F. (2021). Determinants of urban sprawl in Latin America: evidence from Santiago de Chile. SN social sciences, 1(8), 202. https://link.springer.com/article/10.1007/s43545-021-00197-4

[10] Muñoz-Erickson, T. A., Meerow, S., Hobbins, R., Cook, E., Iwaniec, D. M., Berbés-Blázquez, M., ... & Robles-Morua, A. (2021). Beyond bouncing back? Comparing and contesting urban resilience frames in US and Latin American contexts. Landscape and Urban Planning, 214, 104173. https://doi.org/10.1016/j.landurbplan.2021.104173

[11] De Rosa, M., Flores, I., & Morgan, M. (2024). More unequal or not as rich? Revisiting the Latin American exception. World Development, 184, 106737. https://doi.org/10.1016/j.worlddev.2024.106737

[12] Velasco Arevalo, A., & Gerike, R. (2023). Sustainability evaluation methods for public transport with a focus on Latin American cities: A literature review. International Journal of Sustainable Transportation, 17(11), 1236-1253. https://doi.org/10.1080/15568318.2022.2163208

[13] Tiznado-Aitken, I., Vecchio, G., Guzman, L. A., Arellana, J., Humberto, M., Vasconcellos, E., & Muñoz, J. C. (2023). Unequal periurban mobility: Travel patterns, modal choices and urban core dependence in Latin America. Habitat International, 133, 102752. https://doi.org/10.1016/j.habitatint.2023.102752

[14] Ferrari, G., Guzmán-Habinger, J., Chávez, J. L., Werneck, A. O., Silva, D. R., Kovalskys, I., ... & Fisberg, M. (2021). Sociodemographic inequities and active transportation in adults from Latin America: an eight-country observational study. International journal for equity in health, 20(1), 190. https://equityhealthj.biomedcentral.com/articles/10.1186/s12939-021-01524-0

[15] Kundu, B., & Kumar, R. (2024). Enhancing crop resilience to climate change through biochar: a review. International Journal of Environment and Climate Change, 14(6), 170-184 https://doi.org/10.9734/ijecc/2024/v14i64219

[16] Khan, M. I., & Al‐Ghamdi, S. G. (2023). Enhancing Energy System Resilience: Navigating Climate Change and Security Challenges. Sustainable Cities in a Changing Climate: Enhancing Urban Resilience, 227-250. http://dx.doi.org/10.1002/9781394201532.ch14

[17] Asongu, S. A., Diop, S., & Addis, A. K. (2023). Governance, inequality and inclusive education in sub-saharan Africa. In Forum for Social Economics (Vol. 52, No. 1, pp. 43-68). Routledge. http://dx.doi.org/10.2139/ssrn.3734897

[18] Al-Sehrawy, R., Kumar, B., & Watson, R. (2023). The pluralism of digital twins for urban management: Bridging theory and practice. Journal of Urban Management, 12(1), 16-32. https://doi.org/10.1016/j.jum.2023.01.002

[19] Ibrahim, I. M., Radie, A. H., Jacksi, K., Zeebaree, S. R., Shukur, H. M., Rashid, Z. N., ... & Yasin, H. M. (2021). Task scheduling algorithms in cloud computing: A review. Turkish Journal of Computer and Mathematics Education, 12(4), 1041-1053. http://dx.doi.org/10.17762/turcomat.v12i4.612

[20] Ran, X., Xi, Y., Lu, Y., Wang, X., & Lu, Z. (2023). Comprehensive survey on hierarchical clustering algorithms and the recent developments. Artificial Intelligence Review, 56(8), 8219-8264. http://dx.doi.org/10.1007/s10462-022-10366-3

[21] Zhou, Y., Zhang, X., & Ding, F. (2021). Hierarchical estimation approach for RBF-AR models with regression weights based on the increasing data length. IEEE Transactions on Circuits and Systems II: Express Briefs, 68(12), 3597-3601. http://dx.doi.org/10.1109/TCSII.2021.3076112

[22] Shalileh, S., & Mirkin, B. (2022). Community partitioning over feature-rich networks using an extended k-means method. Entropy, 24(5), 626. https://doi.org/10.3390/e24050626

[23] Vera, C., Lucchini, F., Bro, N., Mendoza, M., Löbel, H., Gutiérrez, F., ... & Toro, S. (2022). Learning to cluster urban areas: two competitive approaches and an empirical validation. EPJ Data Science, 11(1), 62. http://dx.doi.org/10.1140/epjds/s13688-022-00374-2

[24] Reyes, A., Mendoza, M., Vera, C., Lucchini, F., Dimter, J., Gutiérrez, F., ... & Reyes, A. (2024). SpatialCluster: A Python library for urban clustering. SoftwareX, 26, 101739. https://doi.org/10.1016/j.softx.2024.101739

[25] Casali, Y., Aydin, N. Y., & Comes, T. (2022). Machine learning for spatial analyses in urban areas: a scoping review. Sustainable cities and society, 85, 104050. https://doi.org/10.1016/j.scs.2022.104050

[26] Nagappan, S. D., & Daud, S. M. (2021). Machine learning predictors for sustainable urban planning. International Journal of Advanced Computer Science and Applications, 12(7). https://thesai.org/Publications/ViewPaper?Volume=12&Issue=7&Code=IJACSA&SerialNo=87

[27] Faraji, A., Homayoon Arya, S., Ghasemi, E., Soleimani, H., & Rahnamayiezekavat, P. (2023). A constructability assessment model based on BIM in urban renewal projects in limited lands. Buildings, 13(10), 2599. https://doi.org/10.3390/buildings13102599

[28] Chaturvedi, V., & de Vries, W. T. (2021). Machine learning algorithms for urban land use planning: A review. Urban Science, 5(3), 68. https://doi.org/10.3390/urbansci5030068

[29] Li, Y., Zhao, Q., & Zhong, C. (2022). GIS and urban data science. Annals of GIS, 28(2), 89-92. https://www.tandfonline.com/doi/pdf/10.1080/19475683.2022.2070969

[30] Sarker, I. H. (2022). Smart City Data Science: Towards data-driven smart cities with open research issues. Internet of Things, 19, 100528. https://doi.org/10.1016/j.iot.2022.100528

[31] Nel, E., MacLachlan, A., Ballinger, O., Cole, H., & Cole, M. (2023). Data-Driven Decision Making in Response to the COVID-19 Pandemic: A City of Cape Town Case Study. Sustainability, 15(3), 1853. http://dx.doi.org/10.3390/su15031853

[32] Schindler, S., & Kanai, J. M. (2021). Getting the territory right: Infrastructure-led development and the re-emergence of spatial planning strategies. Regional Studies, 55(1), 40-51. http://dx.doi.org/10.1080/00343404.2019.1661984

[33] Liu, K., Xu, X., Huang, W., Zhang, R., Kong, L., & Wang, X. (2023). A multi-objective optimization framework for designing urban block forms considering daylight, energy consumption, and photovoltaic energy potential. Building and Environment, 242, 110585. https://doi.org/10.1016/j.buildenv.2023.110585

[34] Martins, M. S., Kalil, R. M. L., & Dalla Rosa, F. (2021). Community participation in the identification of neighbourhood sustainability indicators in Brazil. Habitat International, 113, 102370. https://doi.org/10.1016/j.habitatint.2021.102370

[35] Vazquez, S. A., & Flores, C. C. (2022). The perception of public spaces in Mexico city, a governance approach. Journal of Urban Management, 11(1), 72-81. https://doi.org/10.1016/j.jum.2021.10.002

[36] Zamora-Moncayo, E. C., Herrera, B., Larrieta, J., DuBois, A., & Miguel Esponda, G. (2024). A participatory evaluation of an urban garden project in Ecuador: Exploring factors that impact the recovery of people with severe mental health problems. Qualitative Health Research, 34(14), 1472-1485. https://doi.org/10.1177/10497323241245867

[37] Peng, Z. R., Lu, K. F., Liu, Y., & Zhai, W. (2024). The pathway of urban planning AI: From planning support to plan-making. Journal of Planning Education and Research, 44(4), 2263-2279. http://dx.doi.org/10.1177/0739456X231180568

[38] Maebe, K., Hart, A. F., Marshall, L., Vandamme, P., Vereecken, N. J., Michez, D., & Smagghe, G. (2021). Bumblebee resilience to climate change, through plastic and adaptive responses. Global change biology, 27(18), 4223-4237. http://dx.doi.org/10.1111/gcb.15751

[39] Navarrete-Hernandez, P., Vetro, A., & Concha, P. (2021). Building safer public spaces: Exploring gender difference in the perception of safety in public space through urban design interventions. Landscape and Urban Planning, 214, 104180. https://doi.org/10.1016/j.landurbplan.2021.104180

[40] Kontokosta, C. E. (2021). Urban informatics in the science and practice of planning. Journal of Planning Education and Research, 41(4), 382-395. http://dx.doi.org/10.1177/0739456X18793716

[41] Michalina, D., Mederly, P., Diefenbacher, H., & Held, B. (2021). Sustainable urban development: A review of urban sustainability indicator frameworks. Sustainability, 13(16), 9348. https://doi.org/10.3390/su13169348

[42] Zhu, W., & Chen, J. (2022). The spatial analysis of digital economy and urban development: A case study in Hangzhou, China. Cities, 123, 103563. https://doi.org/10.1016/j.cities.2022.103563

[43] Peng, F. L., Dong, Y. H., Wang, W. X., & Ma, C. X. (2023). The next frontier: data-driven urban underground space planning orienting multiple development concepts. Smart Construction and Sustainable Cities, 1(1), 3. http://dx.doi.org/10.1007/s44268-023-00003-5

[44] Oti, E. U., Olusola, M. O., Eze, F. C., & Enogwe, S. U. (2021). Comprehensive review of K-Means clustering algorithms. criterion, 12, 22-23. http://dx.doi.org/10.31695/IJASRE.2021.34050

[45] Ran, X., Zhou, X., Lei, M., Tepsan, W., & Deng, W. (2021). A novel k-means clustering algorithm with a noise algorithm for capturing urban hotspots. Applied Sciences, 11(23), 11202. https://doi.org/10.3390/app112311202

[46] Mohsin, S. A., & Alfoudi, A. S. (2024). Internet Traffic Classification Model Based on A-DBSCAN Algorithm. International Journal of Intelligent Engineering & Systems, 17(5). https://oaji.net/articles/2023/3603-1723963830.pdf

[47] Tu, X., Fu, C., Huang, A., Chen, H., & Ding, X. (2022). DBSCAN spatial clustering analysis of urban “Production–Living–Ecological” space based on POI data: a case study of central urban Wuhan, China. International Journal of Environmental Research and Public Health, 19(9), 5153. https://doi.org/10.3390/ijerph19095153

[48] Jiang, Y., Liu, Q., Zhao, S., Zhang, T., Fan, X., Zhong, R. Y., & Huang, G. Q. (2024). Heterogeneous intensity-based DBSCAN (iDBSCAN) model for urban attention distribution in digital twin cities. Digital Engineering, 2, 100014. https://doi.org/10.1016/j.dte.2024.100014

[49] Cetin, Z., & Yastikli, N. (2025). Automatic Detection of Urban Trees from LiDAR Data Using DBSCAN and Mean Shift Clustering Methods in Fatih, Istanbul. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48, 95-102. http://dx.doi.org/10.5194/isprs-archives-XLVIII-M-6-2025-95-2025

[50] Caudillo-Cos, C. A., Montejano-Escamilla, J. A., Tapia-McClung, R., Ávila-Jiménez, F. G., & Barrera-Alarcón, I. G. (2024). Defining urban boundaries through DBSCAN and Shannon's entropy: The case of the Mexican National Urban System. Cities, 149, 104969. https://doi.org/10.1016/j.cities.2024.104969

[51] Masum, M. H., Pal, S. K., Akhie, A. A., Ruva, I. J., Akter, N., & Nath, S. (2021). Spatiotemporal monitoring and assessment of noise pollution in an urban setting. Environmental Challenges, 5, 100218. https://doi.org/10.1016/j.envc.2021.100218

[52] Guida, C., Carpentieri, G., & Masoumi, H. (2022). Measuring spatial accessibility to urban services for older adults: an application to healthcare facilities in Milan. European transport research review, 14(1), 23. https://etrr.springeropen.com/articles/10.1186/s12544-022-00544-3#citeas:~:text=DOI-,https%3A//doi.org/10.1186/s12544%2D022%2D00544%2D3,-Share%20this%20article

Contribution of Individual Authors to the Creation of a Scientific Article (Ghostwriting Policy)

All authors contributed equally to the development of the article.

Sources of Funding for the Research Presented in the Scientific Article or for the Scientific Article Itself

No funding was received for conducting this study.

Conflict of Interest

The authors declare that they have no conflicts of interest relevant to the content of this article.

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0.

https://creativecommons.org/licenses/by/4.0/deed.es

Published

2025-03-15

How to Cite

Inteligencia Artificial para la planificación urbana en Latinoamérica. (2025). Innovación Integral, 1(1), 16-33. https://doi.org/10.70577/eag5rs05