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Abstract.- This study explores the application of data mining and machine learning techniques for industrial process
optimization in Latin America, with an emphasis on the context of Industry 4.0. Using simulated data representative
of real-life operations, advanced statistical methodologies were implemented, including imputation models, variable
selection, principal component analysis (PCA), clustering, and predictive models such as XGBoost and SVM. The
results reveal that variables such as lead time, mean time between failures (MTBF), and CO: emissions have a direct
impact on the defect per million (PPM) rate, highlighting the interrelationship between logistical, maintenance, and
environmental factors. The clustering analysis identified three operational profiles differentiated by energy efficiency
and quality, facilitating targeted interventions. Despite the high performance of the XGBoost model, possible
overfitting is noted, so cross-validation is recommended. Time trends did not show significant seasonality, suggesting
a greater influence of internal process variables. The study concludes that the integration of advanced analytics,
predictive maintenance, and artificial intelligence can significantly improve competitiveness, sustainability, and
quality in Latin American manufacturing environments.
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Resumen.- Este estudio explora la aplicacion de técnicas de mineria de datos y aprendizaje automatico para la
optimizacion de procesos industriales en América Latina, con énfasis en el contexto de la industria 4.0. A partir de
datos simulados representativos de operaciones reales, se implementaron metodologias estadisticas avanzadas,
incluyendo modelos de imputacion, seleccion de variables, analisis de componentes principales (PCA), clustering y
modelos predictivos como XGBoost y SVM. Los resultados revelan que variables como el tiempo de entrega (Lead
Time), el tiempo medio entre fallas (MTBF) y las emisiones de CO: tienen impacto directo sobre la tasa de defectos
por millén (PPM), destacando la interrelacion entre factores logisticos, de mantenimiento y ambientales. El analisis
de clustering permitio identificar tres perfiles operativos diferenciados por eficiencia energética y calidad, lo que
facilita intervenciones focalizadas. A pesar del alto rendimiento del modelo XGBoost, se advierte posible sobreajuste,
por lo que se recomienda validacion cruzada. Las tendencias temporales no mostraron estacionalidad significativa,
lo que sugiere una mayor influencia de variables internas del proceso. El estudio concluye que la integracion de
analitica avanzada, mantenimiento predictivo e inteligencia artificial puede mejorar significativamente la
competitividad, sostenibilidad y calidad en los entornos manufactureros de América Latina.
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https://doi.org/10.70577/c7273g40
https://orcid.org/0009-0008-6351-1197
mailto:larajavier776@gmail.com

REVISTA CIENTIFICA INNOVACION INTEGRAL
ISSN: 3103-1420
DOI: https://doi.org/10.70577/c¢72732g40

1. Introduction

Data mining for industrial process optimization
in Latin American manufacturing represents a
transformative  approach  to  improving
operational efficiency and competitiveness in
key industries in the region. Originating in the
1990s, data mining techniques have evolved
significantly, integrating advanced
methodologies such as machine learning and
artificial intelligence to analyze large data sets

[1].

This has enabled manufacturers in countries
such as Brazil, Chile, and Argentina to uncover
patterns and insights that drive better decision-
making and resource allocation within their
production processes [2].

The adoption of data mining is particularly
notable in the Latin American context, where the
manufacturing sector is undergoing a shift
toward Industry 4.0 technologies. This transition
is spurred by the need to optimize processes,
reduce costs, and increase productivity amid
increasing global competition [3].

Key applications of data mining in this sector
include predictive maintenance, quality control,
and supply chain optimization, which
collectively improve operational efficiency and
minimize downtime. However, challenges such
as data quality, technological infrastructure, and
the need for skilled labor persist, complicating
the implementation of these advanced
techniques [4].

The controversies surrounding data mining
practices in Latin America also deserve
attention, particularly in relation to ethical
considerations such as data privacy and
transparency. As organizations increasingly rely
on personal data to drive insights, there is a risk
of  compromising individual  privacy,
necessitating strict data management protocols
to comply with varying local regulations [5].

Furthermore, there is an ongoing debate about
the  socioeconomic impacts of these
technologies, including the potential for job
displacement and the exacerbation of
inequalities,  highlighting the need for
responsible innovation that aligns with
community needs [6].

As Latin American manufacturers continue to
navigate these complexities, the integration of
data mining into industrial processes not only
represents an opportunity for improved
performance but also poses significant ethical
and socioeconomic challenges. Addressing these
issues will be crucial to ensuring that the benefits
of data-driven optimization are distributed
equitably and contribute to sustainable
development within the region [7].

Historical Context

Data mining has evolved significantly over the
decades, emerging as a fundamental tool for
optimizing industrial processes, particularly
within the Latin American manufacturing sector.
Its roots date back to the 1990s, when companies
began leveraging powerful computing resources
and advanced data storage -capabilities to
analyze large amounts of customer information.

This marked a transformative period in which
companies recognized the potential of data
mining to uncover patterns and trends that could
provide them with a competitive advantage in
the marketplace [8].

In the early stages, the focus of data mining was
predominantly on customer relationship
management, where companies aimed to predict
customer behavior and improve service delivery.
As technology advanced, so did the techniques
employed in data mining [9].

The integration of machine learning and
artificial intelligence into data mining practices
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has enabled more sophisticated analysis of
complex data sets, allowing organizations to
gain actionable insights that were previously
unattainable [10].

Latin America's participation in global
manufacturing has also influenced the historical
trajectory of data mining in the region. With
abundant natural resources such as lithium, coal,
and oil, countries such as Chile, Bolivia, and
Argentina have positioned themselves as key
players in the manufacturing landscape. As these
nations sought to optimize their industrial
processes, the adoption of data mining
techniques became increasingly relevant [11].

Furthermore, the emergence of Industry 4.0
technology in Latin America has further
accelerated the need for advanced data mining
applications. Manufacturers have begun to
recognize that leveraging data through mining
can lead to significant improvements in
operational efficiency, customer segmentation,
and predictive maintenance, ultimately driving
better decision-making [12].

The historical context of data mining reflects a
broader shift toward a data-driven approach in
industrial processes. As companies in Latin
America continue to adapt and integrate these
technologies, the legacy of data mining as a
critical component of strategic decision-making
will likely shape the future of manufacturing in
the region [13].

Data Mining Techniques

Data mining encompasses a variety of
techniques and methodologies used to extract
valuable information from large data sets,
particularly in the context of optimizing
industrial processes in Latin American
manufacturing.

Overview of Data Mining Techniques

Data mining techniques are employed to identify
patterns, relationships, and trends within large
data sets. This process often involves several
stages, including data cleaning, exploratory data
analysis, model building, and model evaluation.
Each of these stages uses specific algorithms and
methods to ensure that the extracted information
is accurate and actionable [14].

Common Algorithms in Data Mining

Several algorithms prevail in the data mining
landscape, each tailored to different types of
analytical tasks. Decision trees: These are used
for classification tasks, allowing analysts to
make predictions based on the characteristics of
the data set [15].

K-Means Clustering: This unsupervised learning
technique is used to segment data into distinct
groups based on shared attributes, making it
useful for identifying customer segments or
production efficiencies [16].

Support Vector Machines (SVM): Used for both
regression and classification, SVMs build
models by mapping features in a dataset to
output classifications [17].

Naive Bayes Classifier: Based on Bayes'
theorem, this algorithm is effective for
classifying categorical data and is known for its
computational efficiency [18].

Random Forests: This method improves
prediction accuracy by aggregating the results of
multiple decision trees, thereby reducing the risk
of overfitting [19].

Manufacturing Applications

In the manufacturing sector, data mining
techniques facilitate several applications that
significantly improve operational efficiency,
such as predictive maintenance: By analyzing
sensor data and historical performance records,
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manufacturers can anticipate equipment failures,
thereby reducing downtime and maintenance
costs by up to 50% [20].

Process Optimization: Data mining helps
identify bottlenecks and inefficiencies within
production lines, enabling better resource
allocation and waste reduction [21].

Quality Control: Algorithms analyze quality
metrics and sensor data to detect defects early in
the production process, ensuring higher product
quality [22].

Inventory Management: Predictive analytics
forecast demand and optimize inventory levels,
reducing carrying costs and improving supply
chain efficiency [23].

Challenges and Considerations

While data mining presents numerous benefits,
it also requires careful consideration of data
quality and project context. Effective
preprocessing is essential to prepare data for
mining, ensuring it is clean and relevant to the
analysis objectives. Collaboration with all
stakeholders during this stage is crucial to define
what data to extract and establish appropriate
project parameters.

By leveraging these data mining techniques,
Latin American manufacturers can transform
raw data into actionable insights, thereby
improving their competitiveness 1in an
increasingly data-driven global marketplace
[24].

Applications in Industrial Processes

Data Collection and Preparation

In the context of data mining for industrial
processes, the initial step involves collecting and

preparing event data from various source
systems, such as enterprise resource planning

(ERP), customer relationship management
(CRM), supply chain management (SCM), and
manufacturing execution systems (MES). This
phase is crucial as it maps the relevant processes.
However, data cleaning and curation often
requires manual intervention, which can be time-
consuming and resource-intensive [25].

Process Mining Analysis

Once the data is prepared, process mining
techniques are employed to analyze actual
processes. This analysis aims to visualize and
understand  process models, workflows,
performance metrics, and identify existing
problems. Initially, traditional methods should
be used to ensure the entire project team is
aligned on the process before leveraging
advanced techniques, including generative Al,
which is essential for generating new process
models or variants that optimize the defined
objectives and requirements based on the
analyzed event logs [26].

Evaluating and Validating Process Models

After generating new process models or variants,
the next step is to evaluate and validate these
models. This process involves assessing their
feasibility, effectiveness, and robustness, which
requires collaboration among an extended team
to ensure all aspects of the process are
adequately represented. The success of process
mining relies heavily on the quality and integrity
of event logs, as incomplete or inaccurate data
can hinder the implementation process and skew
results [27].

Integrating Generative Al

Incorporating Genai into process mining
presents several advantages and challenges.
While Genai can automate the generation of
optimization suggestions and new process
models, it requires significant IT knowledge and
may require extensive employee training. The


https://doi.org/10.70577/c7273g40

REVISTA CIENTIFICA INNOVACION INTEGRAL
ISSN: 3103-1420
DOI: https://doi.org/10.70577/c¢72732g40

potential for organizational resistance to change
can also impede the adoption of Genai solutions
[28]. However, when successfully implemented,
Genai can facilitate the continuous optimization
of business processes, enabling real-time
adjustments in response to changing conditions.

Benefits and Drawbacks of Process Mining
Bots

Using a Genai process mining bot can
significantly improve operational efficiency by
reducing manual effort and human error in
process modeling and improvement tasks. The
bot can offer interactive and visual
representations of business processes, increasing
transparency and understanding [29].

Instead, organizations may face challenges
related to cultural resistance and the complexity
of integrating new technologies, which may
require  careful planning and change
management strategies to ensure stakeholder
buy-in [30].

Predictive Maintenance and Automation

Predictive maintenance stands out as a
fundamental application of data mining in
manufacturing. By analyzing historical machine
data, manufacturers can predict equipment
failures and proactively schedule maintenance,
thereby minimizing downtime and extending
machinery life [31]. Furthermore, automation
technologies are increasingly replacing manual
operations, especially in harsh environments,
improving safety and operational efficiency
within the mining and metallurgical sectors.

2. Materials and methods
2.1 Statistical Models
This analysis employed a comprehensive

statistical methodology for industrial process
optimization, combining traditional techniques

with modern machine learning approaches. The
methodology was structured into several levels
of analysis, each designed to address specific
aspects of the production processes.

First, data generation was based on theoretical
probabilistic  distributions ~ that  reflect
operational reality. Operational variables, such
as cycle time and MTBF, are modeled using
normal and exponential distributions, allowing
for the capture of both stable processes and rare
events. Environmental and quality metrics are
represented using beta and Poisson distributions,
respectively, ensuring that the simulated data
reflect the variability inherent in industrial
processes.

The statistical analysis began with a rigorous
validation of the distribution assumptions.
Nonparametric tests such as the Kolmogorov-
Smirnov test were applied to verify fit to non-
normal distributions, while the Shapiro-Wilk test
was used to confirm normality when
appropriate. This initial process is crucial to
ensure that subsequent statistical inferences are
based on valid assumptions and that predictive
models are applicable to the data.

For data processing, two advanced missing data
imputation techniques were implemented: KNN
Imputer and Iterative Imputer. KNN Imputer
uses similarity between observations to predict
missing values, which is particularly useful
when there is a spatial or temporal structure in
the data. Iterative Imputer, on the other hand,
employs an iterative approach based on multiple
regression, allowing for the capture of more
complex relationships between variables.

Variable selection was addressed using a multi-
criteria approach combining statistical and
machine  learning  techniques.  Pearson
correlation is used to identify significant linear
relationships between variables, providing an
initial basis for selection. Random Forest, a
robust machine learning method, offers a
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variable importance metric based on impurity
reduction, which is particularly useful for
identifying variables with nonlinear effects or
complex interactions.

Principal component analysis (PCA) was
implemented as a dimensionality reduction
technique, allowing the identification of linear
combinations of wvariables that explain the
greatest variance in the data. This technique is
especially relevant in the industrial context,
where there are often multiple correlated
variables that can be reduced to a more
manageable set of principal components.

Regarding predictive modeling, two
complementary approaches were employed:
XGBoost and Support Vector Machine (SVM).
XGBoost, an advanced boosting model,
provides accurate predictions by combining
multiple optimized decision trees. This approach
is particularly well-suited to problems with
multiple predictor variables and nonlinear
relationships. SVM, on the other hand, provides
an optimal decision boundary in a transformed
feature space, which is especially useful when
the relationships between variables are complex
and nonlinear.

Clustering analysis was performed using the K-
Means algorithm, which groups similar
observations based on operational and
environmental characteristics. This technique
allows for the identification of emerging patterns
in the data and provides a basis for decision-
making based on similar process profiles. The
choice of the number of clusters (k=3) is based
on an assessment of the data structure and the
interpretability of the resulting groups.

Data visualizations play a crucial role in the
interpretation and communication of results.
Time trend graphs are implemented to analyze
the evolution of processes, heat maps are used to
visualize correlation matrices, and scatter plots
are used to represent the cluster structure. These

visualizations  allow for an intuitive
interpretation of the patterns and relationships in
the data, facilitating decision-making based on
empirical evidence.

It is important to emphasize that the analysis
results were interpreted within the context of
their methodological limitations. Correlation
does not imply causality, and predictive models
are subject to random variability. Interpreting
clusters requires considering both statistical
metrics and industrial domain knowledge.

2.2 Data Used

This analysis was based on a simulated dataset
reflecting complex industrial processes,
designed to capture the variability and dynamics
inherent in modern production. The data are
structured into three main categories:
operational variables, quality metrics, and
environmental metrics.

Operational Variables

Cycle Time: This was modeled using a normal
distribution (u=10, o©=2), representing the
average time required to complete a production
unit. This distribution reflects the typical
operational variability in stable production
processes.

Mean Time Between Failures (MTBF): This was
modeled using an exponential distribution
(A=1/100), which is appropriate for rare events
that follow a Poisson process. This metric is
crucial for predictive maintenance management.

Mean Time To Repair (MTTR): This was also
modeled using an exponential distribution
(A=1/10), reflecting the variability in recovery
times after failures.

Energy Consumption: Represented using a
normal distribution (u=50, ©=5), which is
consistent with the typical variability in
industrial energy consumption.
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Inventory: Modeled using a Poisson distribution
(A=200), appropriate for counting discrete stock
units.

Lead Time: Uses a normal distribution (p=5,
o=1), representing the average delivery times of
raw materials or components.

Quality Metrics

Parts Per Million (PPM): Modeled using a beta
distribution (0=2, f=50) scaled to 1e6, which is
appropriate for representing defect rates that
tend to be low but can vary significantly.

Specification Compliance: Represented using a
binomial distribution (p=0.95), indicating the
percentage of units that meet the required
technical specifications.

Environmental Metrics

CO2 Emissions: Modeled with a normal
distribution (p=100, o©=20), reflecting the
variability in greenhouse gas emissions.

Water Use: Represented with a normal
distribution (u=30, o0=5), capturing the
variability in industrial water consumption.

Temporal and Spatial Characteristics

Data are generated for a 5-year period, with 100
samples per year, providing a robust database for
analyzing temporal trends and seasonal
variability. This temporal structure allows for
identifying seasonal patterns in operational
processes, analyzing the evolution of quality
metrics over time, detecting trends in
environmental performance, and evaluating the
effectiveness of implemented improvement
measures.

Correlation Structure

The variables are designed to reflect realistic
relationships between them, based on industrial
experience:

Operational Relationships: Cycle time was
moderately correlated with energy consumption.
MTBF and MTTR showed a natural inverse
relationship. Lead time had a positive correlation
with inventory.

Quality Relationships: PPM defects are
correlated with critical operating variables, and
specification compliance shows an inverse
relationship with the number of defects.

Environmental Relationships: Energy
consumption was strongly correlated with CO2
emissions. Water use showed a moderate
relationship with energy consumption.

Cluster Structure

The clustering analysis identifies three main
groups of operations, each with distinctive
characteristics:

High Efficiency Cluster: optimized cycle times,
low energy consumption, low defect rates, and
low environmental impact.

Medium Efficiency Cluster: average cycle times,
moderate energy consumption, medium defect
rates, and moderate environmental impact.

Low Efficiency Cluster: long cycle times, high
energy consumption, high defect rates, and
greater environmental impact.

This data structure provides a solid foundation
for statistical and machine learning analysis,
enabling the identification of operational and
quality patterns, analysis of energy and
environmental efficiency, identification of
opportunities for process improvement, and
development of optimization strategies based on
empirical evidence.
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The dataset realistically simulates the challenges
and opportunities of modern industrial
production, providing a solid foundation for
statistical analysis and data-driven decision-
making.

3. Results

Statistical and machine learning analysis applied
to industrial data has revealed several significant
findings that merit detailed interpretation:

Correlation Analysis and Variable Selection
The results show that the variables with the
highest absolute correlation with the defect rate

per million (PPM) are shown in Figure 1.

Correlation with Defect PPM

1.0 1

B abs_correlation

variable

Fig 1. Correlation with defect rate.

Lead Time (0.0519): This correlation suggests
that longer lead times may be associated with a
higher risk of defects, which is consistent with
operational literature indicating that variability
in lead times can affect process quality.

CO2 Emissions (0.0566): The correlation
between environmental emissions and product
quality is particularly relevant (Figure 2),
indicating that more energy-intensive processes
may be associated with a higher risk of defects.

Carrelation Matrix

co2_emissior
water_usa

b
5
H
M

Fig 2. Correlation between environmental
emissions and product quality.

Variable Importance (Random Forest)

Variable importance analysis using Random
Forest reveals a clear hierarchy:

Defect PPM (99.68%): As a target variable, this
is expected and confirms the consistency of the
model.

MTBF (0.076%): Time between failures is the
second most important variable, which is
consistent with reliability theory, which
indicates that equipment reliability directly
affects product quality.

Lead Time (0.043%): This variable maintains its
importance in the Random Forest analysis,
reinforcing the importance of logistics in process

quality.

Clustering Analysis

Clustering analysis identified three distinct
groups with significant operational and quality
characteristics (Figure 3).



https://doi.org/10.70577/c7273g40

REVISTA CIENTIFICA INNOVACION INTEGRAL
ISSN: 3103-1420
DOI: https://doi.org/10.70577/c¢72732g40

Clustering Analysis

Fig 3. Cluster analysis.

Cluster 1 (Defects: 36,379 PPM, Energy: 5.01):
This group represents relatively stable processes
with a moderate level of defects and energy
consumption.

Cluster 2 (Defects: 37,208 PPM, Energy: 4.93):
This group shows a slightly higher level of
defects but similar energy consumption,
suggesting that the processes in this cluster could
be energy-optimized, but at a cost in terms of
quality.

Cluster 3 (Defects: 31,504 PPM, Energy: 5.44):
This group represents processes with better
quality (fewer defects) but with higher energy
consumption, which could indicate slower but
more efficient processes.

Predictive Model Performance

The XGBoost model achieved a score of 1.0,
indicating a perfect fit on the training data.
However, it is important to note that this result
could be biased by overfitting, suggesting the
need to implement cross-validation in future
analyses.

Time Trend Analysis
The time trend visualizations (Figure 4) show

relative stability in the key operating variables,
moderate variability in environmental metrics,

and a lack of clear seasonal patterns in the defect
rate.

Environmental Trends

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
Year

Fig 4. Visualizations of temporal trends.

4. Discussion

Statistical and machine learning analysis of
industrial data provides relevant findings that
reflect the complexity and interdependence of
operational, environmental, and quality factors
in advanced manufacturing environments. In the
context of Latin America, where the adoption of
Fourth Industrial Revolution technologies is
progressively advancing [32], these results gain
strategic importance for process optimization
and data-driven decision-making.

First, correlation analysis shows a positive,
albeit moderate, relationship between lead time
and the defect rate per million (PPM),
suggesting that supply chain delays could
compromise final product quality. This
observation is consistent with the findings of
those who point out that operational variability
directly affects quality outcomes [20]. Similarly,
the correlation between CO: emissions and
quality suggests that energy-intensive processes
not only present environmental challenges [33]
but also implications for product stability, as has
been documented in mining and industrial
contexts in the region [34].

Variable importance analysis using Random
Forest reinforces these relationships. The MTBF
(Mean Time Between Failures) variable appears
to be the most significant after the target variable
(Defect PPM), underscoring the importance of
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equipment reliability, a constant in the predictive
maintenance literature. The fact that Lead Time
remains relevant in this nonparametric model
indicates that logistics efficiency continues to be
a key determinant of quality, especially in
regions where logistics challenges are structural

[4].

Clustering analysis provides a differentiating
approach by identifying three clearly distinct
operational profiles. Cluster 3, with the lowest
defect rate but the highest energy consumption,
represents a classic dilemma in manufacturing:
the dichotomy between quality and energy
efficiency. This raises the question of the need
for solutions based on artificial intelligence (AI)
and the Internet of Things (IoT) that can achieve
both objectives simultaneously, as has been
proposed in Industry 4.0 in Latin America [35].

Regarding the performance of the predictive
model, the perfect result of the XGBoost model
(score = 1.0) should be interpreted with caution.
Although it reveals high fitting power, it also
suggests overfitting, a common limitation in
non-regularized models with limited data sets
[36]. This reinforces the need for more robust
cross-validation and generalization tests,
especially in sectors such as mining and
manufacturing ~ where  contexts  change
dynamically [37].

Finally, the analysis of temporal trends shows
relative operational stability, along with greater
variability in environmental metrics. The
absence of seasonal patterns in the defect rate
could indicate that quality factors are more
sensitive to internal process conditions than to
external factors, a hypothesis that merits future
exploration with multivariate models and
higher-granularity time series [38].

In summary, the results support the need for
integrated approaches that combine advanced
analytics, sustainability, and digital
transformation to improve industrial quality in

Latin America. This not only responds to
competitiveness demands but also to
increasingly stringent regulatory and social
frameworks [1][23].

5. Conclusions

The results obtained reveal that quality in
industrial processes, measured through the
defect rate per million (PPM), is influenced by
multiple operational and environmental factors
that act interdependently. In particular, variables
such as lead time and mean time between
failures (MTBF) emerge as key determinants,
highlighting the importance of efficient logistics
management and predictive maintenance to
reduce defects.

Furthermore, the correlation between CO:
emissions and the defect rate suggests that more
energy-intensive processes could compromise
quality, posing a challenge for industries seeking
to balance environmental sustainability with
productive performance. Clustering analysis
provides a segmented view that allows for the
identification of distinct operational profiles,
facilitating group-specific interventions.

The perfect performance of the XGBoost model
warns of possible overfitting, highlighting the
need to apply more robust validation techniques
in future studies. Finally, the stability observed
in the operational variables in the face of
variability in the environmental indicators
indicates that quality improvements must be
accompanied by proactive and adaptive
environmental management.
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