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Abstract.- This study explores the application of data mining and machine learning techniques for industrial process 

optimization in Latin America, with an emphasis on the context of Industry 4.0. Using simulated data representative 

of real-life operations, advanced statistical methodologies were implemented, including imputation models, variable 

selection, principal component analysis (PCA), clustering, and predictive models such as XGBoost and SVM. The 

results reveal that variables such as lead time, mean time between failures (MTBF), and CO₂ emissions have a direct 

impact on the defect per million (PPM) rate, highlighting the interrelationship between logistical, maintenance, and 

environmental factors. The clustering analysis identified three operational profiles differentiated by energy efficiency 

and quality, facilitating targeted interventions. Despite the high performance of the XGBoost model, possible 

overfitting is noted, so cross-validation is recommended. Time trends did not show significant seasonality, suggesting 

a greater influence of internal process variables. The study concludes that the integration of advanced analytics, 

predictive maintenance, and artificial intelligence can significantly improve competitiveness, sustainability, and 

quality in Latin American manufacturing environments. 
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Resumen.- Este estudio explora la aplicación de técnicas de minería de datos y aprendizaje automático para la 

optimización de procesos industriales en América Latina, con énfasis en el contexto de la industria 4.0. A partir de 

datos simulados representativos de operaciones reales, se implementaron metodologías estadísticas avanzadas, 

incluyendo modelos de imputación, selección de variables, análisis de componentes principales (PCA), clustering y 

modelos predictivos como XGBoost y SVM. Los resultados revelan que variables como el tiempo de entrega (Lead 

Time), el tiempo medio entre fallas (MTBF) y las emisiones de CO₂ tienen impacto directo sobre la tasa de defectos 

por millón (PPM), destacando la interrelación entre factores logísticos, de mantenimiento y ambientales. El análisis 

de clustering permitió identificar tres perfiles operativos diferenciados por eficiencia energética y calidad, lo que 

facilita intervenciones focalizadas. A pesar del alto rendimiento del modelo XGBoost, se advierte posible sobreajuste, 

por lo que se recomienda validación cruzada. Las tendencias temporales no mostraron estacionalidad significativa, 

lo que sugiere una mayor influencia de variables internas del proceso. El estudio concluye que la integración de 

analítica avanzada, mantenimiento predictivo e inteligencia artificial puede mejorar significativamente la 

competitividad, sostenibilidad y calidad en los entornos manufactureros de América Latina. 
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1. Introduction  

 
Data mining for industrial process optimization 

in Latin American manufacturing represents a 

transformative approach to improving 

operational efficiency and competitiveness in 

key industries in the region. Originating in the 

1990s, data mining techniques have evolved 

significantly, integrating advanced 

methodologies such as machine learning and 

artificial intelligence to analyze large data sets 

[1]. 

 

This has enabled manufacturers in countries 

such as Brazil, Chile, and Argentina to uncover 

patterns and insights that drive better decision-

making and resource allocation within their 

production processes [2]. 

 

The adoption of data mining is particularly 

notable in the Latin American context, where the 

manufacturing sector is undergoing a shift 

toward Industry 4.0 technologies. This transition 

is spurred by the need to optimize processes, 

reduce costs, and increase productivity amid 

increasing global competition [3]. 

 

Key applications of data mining in this sector 

include predictive maintenance, quality control, 

and supply chain optimization, which 

collectively improve operational efficiency and 

minimize downtime. However, challenges such 

as data quality, technological infrastructure, and 

the need for skilled labor persist, complicating 

the implementation of these advanced 

techniques [4]. 

 

The controversies surrounding data mining 

practices in Latin America also deserve 

attention, particularly in relation to ethical 

considerations such as data privacy and 

transparency. As organizations increasingly rely 

on personal data to drive insights, there is a risk 

of compromising individual privacy, 

necessitating strict data management protocols 

to comply with varying local regulations [5]. 

 

Furthermore, there is an ongoing debate about 

the socioeconomic impacts of these 

technologies, including the potential for job 

displacement and the exacerbation of 

inequalities, highlighting the need for 

responsible innovation that aligns with 

community needs [6]. 

 

As Latin American manufacturers continue to 

navigate these complexities, the integration of 

data mining into industrial processes not only 

represents an opportunity for improved 

performance but also poses significant ethical 

and socioeconomic challenges. Addressing these 

issues will be crucial to ensuring that the benefits 

of data-driven optimization are distributed 

equitably and contribute to sustainable 

development within the region [7]. 

 

Historical Context 

 

Data mining has evolved significantly over the 

decades, emerging as a fundamental tool for 

optimizing industrial processes, particularly 

within the Latin American manufacturing sector. 

Its roots date back to the 1990s, when companies 

began leveraging powerful computing resources 

and advanced data storage capabilities to 

analyze large amounts of customer information. 

 

This marked a transformative period in which 

companies recognized the potential of data 

mining to uncover patterns and trends that could 

provide them with a competitive advantage in 

the marketplace [8]. 

 

In the early stages, the focus of data mining was 

predominantly on customer relationship 

management, where companies aimed to predict 

customer behavior and improve service delivery. 

As technology advanced, so did the techniques 

employed in data mining [9]. 

 

The integration of machine learning and 

artificial intelligence into data mining practices 
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has enabled more sophisticated analysis of 

complex data sets, allowing organizations to 

gain actionable insights that were previously 

unattainable [10]. 

 

Latin America's participation in global 

manufacturing has also influenced the historical 

trajectory of data mining in the region. With 

abundant natural resources such as lithium, coal, 

and oil, countries such as Chile, Bolivia, and 

Argentina have positioned themselves as key 

players in the manufacturing landscape. As these 

nations sought to optimize their industrial 

processes, the adoption of data mining 

techniques became increasingly relevant [11]. 

 

Furthermore, the emergence of Industry 4.0 

technology in Latin America has further 

accelerated the need for advanced data mining 

applications. Manufacturers have begun to 

recognize that leveraging data through mining 

can lead to significant improvements in 

operational efficiency, customer segmentation, 

and predictive maintenance, ultimately driving 

better decision-making [12]. 

 

The historical context of data mining reflects a 

broader shift toward a data-driven approach in 

industrial processes. As companies in Latin 

America continue to adapt and integrate these 

technologies, the legacy of data mining as a 

critical component of strategic decision-making 

will likely shape the future of manufacturing in 

the region [13]. 

 

Data Mining Techniques 

 

Data mining encompasses a variety of 

techniques and methodologies used to extract 

valuable information from large data sets, 

particularly in the context of optimizing 

industrial processes in Latin American 

manufacturing. 

 

Overview of Data Mining Techniques 

 

Data mining techniques are employed to identify 

patterns, relationships, and trends within large 

data sets. This process often involves several 

stages, including data cleaning, exploratory data 

analysis, model building, and model evaluation. 

Each of these stages uses specific algorithms and 

methods to ensure that the extracted information 

is accurate and actionable [14]. 

 

Common Algorithms in Data Mining 

 

Several algorithms prevail in the data mining 

landscape, each tailored to different types of 

analytical tasks. Decision trees: These are used 

for classification tasks, allowing analysts to 

make predictions based on the characteristics of 

the data set [15]. 

 

K-Means Clustering: This unsupervised learning 

technique is used to segment data into distinct 

groups based on shared attributes, making it 

useful for identifying customer segments or 

production efficiencies [16]. 

 

Support Vector Machines (SVM): Used for both 

regression and classification, SVMs build 

models by mapping features in a dataset to 

output classifications [17]. 

 

Naive Bayes Classifier: Based on Bayes' 

theorem, this algorithm is effective for 

classifying categorical data and is known for its 

computational efficiency [18]. 

 

Random Forests: This method improves 

prediction accuracy by aggregating the results of 

multiple decision trees, thereby reducing the risk 

of overfitting [19]. 

 

Manufacturing Applications 

 

In the manufacturing sector, data mining 

techniques facilitate several applications that 

significantly improve operational efficiency, 

such as predictive maintenance: By analyzing 

sensor data and historical performance records, 
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manufacturers can anticipate equipment failures, 

thereby reducing downtime and maintenance 

costs by up to 50% [20]. 

 

Process Optimization: Data mining helps 

identify bottlenecks and inefficiencies within 

production lines, enabling better resource 

allocation and waste reduction [21]. 

 

Quality Control: Algorithms analyze quality 

metrics and sensor data to detect defects early in 

the production process, ensuring higher product 

quality [22]. 

 

Inventory Management: Predictive analytics 

forecast demand and optimize inventory levels, 

reducing carrying costs and improving supply 

chain efficiency [23]. 

 

Challenges and Considerations 

 

While data mining presents numerous benefits, 

it also requires careful consideration of data 

quality and project context. Effective 

preprocessing is essential to prepare data for 

mining, ensuring it is clean and relevant to the 

analysis objectives. Collaboration with all 

stakeholders during this stage is crucial to define 

what data to extract and establish appropriate 

project parameters. 

 

By leveraging these data mining techniques, 

Latin American manufacturers can transform 

raw data into actionable insights, thereby 

improving their competitiveness in an 

increasingly data-driven global marketplace 

[24]. 

 

Applications in Industrial Processes 

 

Data Collection and Preparation 

 

In the context of data mining for industrial 

processes, the initial step involves collecting and 

preparing event data from various source 

systems, such as enterprise resource planning 

(ERP), customer relationship management 

(CRM), supply chain management (SCM), and 

manufacturing execution systems (MES). This 

phase is crucial as it maps the relevant processes. 

However, data cleaning and curation often 

requires manual intervention, which can be time-

consuming and resource-intensive [25]. 

 

Process Mining Analysis 

 

Once the data is prepared, process mining 

techniques are employed to analyze actual 

processes. This analysis aims to visualize and 

understand process models, workflows, 

performance metrics, and identify existing 

problems. Initially, traditional methods should 

be used to ensure the entire project team is 

aligned on the process before leveraging 

advanced techniques, including generative AI, 

which is essential for generating new process 

models or variants that optimize the defined 

objectives and requirements based on the 

analyzed event logs [26]. 

 

Evaluating and Validating Process Models 

 

After generating new process models or variants, 

the next step is to evaluate and validate these 

models. This process involves assessing their 

feasibility, effectiveness, and robustness, which 

requires collaboration among an extended team 

to ensure all aspects of the process are 

adequately represented. The success of process 

mining relies heavily on the quality and integrity 

of event logs, as incomplete or inaccurate data 

can hinder the implementation process and skew 

results [27]. 

 

Integrating Generative AI 

 

Incorporating Genai into process mining 

presents several advantages and challenges. 

While Genai can automate the generation of 

optimization suggestions and new process 

models, it requires significant IT knowledge and 

may require extensive employee training. The 
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potential for organizational resistance to change 

can also impede the adoption of Genai solutions 

[28]. However, when successfully implemented, 

Genai can facilitate the continuous optimization 

of business processes, enabling real-time 

adjustments in response to changing conditions. 

 

Benefits and Drawbacks of Process Mining 

Bots 

 

Using a Genai process mining bot can 

significantly improve operational efficiency by 

reducing manual effort and human error in 

process modeling and improvement tasks. The 

bot can offer interactive and visual 

representations of business processes, increasing 

transparency and understanding [29]. 

 

Instead, organizations may face challenges 

related to cultural resistance and the complexity 

of integrating new technologies, which may 

require careful planning and change 

management strategies to ensure stakeholder 

buy-in [30]. 

 

Predictive Maintenance and Automation 

 

Predictive maintenance stands out as a 

fundamental application of data mining in 

manufacturing. By analyzing historical machine 

data, manufacturers can predict equipment 

failures and proactively schedule maintenance, 

thereby minimizing downtime and extending 

machinery life [31]. Furthermore, automation 

technologies are increasingly replacing manual 

operations, especially in harsh environments, 

improving safety and operational efficiency 

within the mining and metallurgical sectors. 

 

2. Materials and methods 

 
2.1 Statistical Models 

 

This analysis employed a comprehensive 

statistical methodology for industrial process 

optimization, combining traditional techniques 

with modern machine learning approaches. The 

methodology was structured into several levels 

of analysis, each designed to address specific 

aspects of the production processes. 

 

First, data generation was based on theoretical 

probabilistic distributions that reflect 

operational reality. Operational variables, such 

as cycle time and MTBF, are modeled using 

normal and exponential distributions, allowing 

for the capture of both stable processes and rare 

events. Environmental and quality metrics are 

represented using beta and Poisson distributions, 

respectively, ensuring that the simulated data 

reflect the variability inherent in industrial 

processes. 

 

The statistical analysis began with a rigorous 

validation of the distribution assumptions. 

Nonparametric tests such as the Kolmogorov-

Smirnov test were applied to verify fit to non-

normal distributions, while the Shapiro-Wilk test 

was used to confirm normality when 

appropriate. This initial process is crucial to 

ensure that subsequent statistical inferences are 

based on valid assumptions and that predictive 

models are applicable to the data. 

 

For data processing, two advanced missing data 

imputation techniques were implemented: KNN 

Imputer and Iterative Imputer. KNN Imputer 

uses similarity between observations to predict 

missing values, which is particularly useful 

when there is a spatial or temporal structure in 

the data. Iterative Imputer, on the other hand, 

employs an iterative approach based on multiple 

regression, allowing for the capture of more 

complex relationships between variables. 

 

Variable selection was addressed using a multi-

criteria approach combining statistical and 

machine learning techniques. Pearson 

correlation is used to identify significant linear 

relationships between variables, providing an 

initial basis for selection. Random Forest, a 

robust machine learning method, offers a 
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variable importance metric based on impurity 

reduction, which is particularly useful for 

identifying variables with nonlinear effects or 

complex interactions. 

 

Principal component analysis (PCA) was 

implemented as a dimensionality reduction 

technique, allowing the identification of linear 

combinations of variables that explain the 

greatest variance in the data. This technique is 

especially relevant in the industrial context, 

where there are often multiple correlated 

variables that can be reduced to a more 

manageable set of principal components. 

 

Regarding predictive modeling, two 

complementary approaches were employed: 

XGBoost and Support Vector Machine (SVM). 

XGBoost, an advanced boosting model, 

provides accurate predictions by combining 

multiple optimized decision trees. This approach 

is particularly well-suited to problems with 

multiple predictor variables and nonlinear 

relationships. SVM, on the other hand, provides 

an optimal decision boundary in a transformed 

feature space, which is especially useful when 

the relationships between variables are complex 

and nonlinear. 

 

Clustering analysis was performed using the K-

Means algorithm, which groups similar 

observations based on operational and 

environmental characteristics. This technique 

allows for the identification of emerging patterns 

in the data and provides a basis for decision-

making based on similar process profiles. The 

choice of the number of clusters (k=3) is based 

on an assessment of the data structure and the 

interpretability of the resulting groups. 

 

Data visualizations play a crucial role in the 

interpretation and communication of results. 

Time trend graphs are implemented to analyze 

the evolution of processes, heat maps are used to 

visualize correlation matrices, and scatter plots 

are used to represent the cluster structure. These 

visualizations allow for an intuitive 

interpretation of the patterns and relationships in 

the data, facilitating decision-making based on 

empirical evidence. 

 

It is important to emphasize that the analysis 

results were interpreted within the context of 

their methodological limitations. Correlation 

does not imply causality, and predictive models 

are subject to random variability. Interpreting 

clusters requires considering both statistical 

metrics and industrial domain knowledge. 

 

2.2 Data Used 

This analysis was based on a simulated dataset 

reflecting complex industrial processes, 

designed to capture the variability and dynamics 

inherent in modern production. The data are 

structured into three main categories: 

operational variables, quality metrics, and 

environmental metrics. 

 

Operational Variables 

 

Cycle Time: This was modeled using a normal 

distribution (μ=10, σ=2), representing the 

average time required to complete a production 

unit. This distribution reflects the typical 

operational variability in stable production 

processes. 

 

Mean Time Between Failures (MTBF): This was 

modeled using an exponential distribution 

(λ=1/100), which is appropriate for rare events 

that follow a Poisson process. This metric is 

crucial for predictive maintenance management. 

 

Mean Time To Repair (MTTR): This was also 

modeled using an exponential distribution 

(λ=1/10), reflecting the variability in recovery 

times after failures. 

 

Energy Consumption: Represented using a 

normal distribution (μ=50, σ=5), which is 

consistent with the typical variability in 

industrial energy consumption. 
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Inventory: Modeled using a Poisson distribution 

(λ=200), appropriate for counting discrete stock 

units. 

 

Lead Time: Uses a normal distribution (μ=5, 

σ=1), representing the average delivery times of 

raw materials or components. 

 

Quality Metrics 

 

Parts Per Million (PPM): Modeled using a beta 

distribution (α=2, β=50) scaled to 1e6, which is 

appropriate for representing defect rates that 

tend to be low but can vary significantly. 

 

Specification Compliance: Represented using a 

binomial distribution (p=0.95), indicating the 

percentage of units that meet the required 

technical specifications. 

 

Environmental Metrics 

 

CO2 Emissions: Modeled with a normal 

distribution (μ=100, σ=20), reflecting the 

variability in greenhouse gas emissions. 

 

Water Use: Represented with a normal 

distribution (μ=30, σ=5), capturing the 

variability in industrial water consumption. 

 

Temporal and Spatial Characteristics 

 

Data are generated for a 5-year period, with 100 

samples per year, providing a robust database for 

analyzing temporal trends and seasonal 

variability. This temporal structure allows for 

identifying seasonal patterns in operational 

processes, analyzing the evolution of quality 

metrics over time, detecting trends in 

environmental performance, and evaluating the 

effectiveness of implemented improvement 

measures. 

 

Correlation Structure 

 

The variables are designed to reflect realistic 

relationships between them, based on industrial 

experience: 

 

Operational Relationships: Cycle time was 

moderately correlated with energy consumption. 

MTBF and MTTR showed a natural inverse 

relationship. Lead time had a positive correlation 

with inventory. 

 

Quality Relationships: PPM defects are 

correlated with critical operating variables, and 

specification compliance shows an inverse 

relationship with the number of defects. 

 

Environmental Relationships: Energy 

consumption was strongly correlated with CO2 

emissions. Water use showed a moderate 

relationship with energy consumption. 

 

Cluster Structure 

 

The clustering analysis identifies three main 

groups of operations, each with distinctive 

characteristics: 

 

High Efficiency Cluster: optimized cycle times, 

low energy consumption, low defect rates, and 

low environmental impact. 

 

Medium Efficiency Cluster: average cycle times, 

moderate energy consumption, medium defect 

rates, and moderate environmental impact. 

 

Low Efficiency Cluster: long cycle times, high 

energy consumption, high defect rates, and 

greater environmental impact. 

 

This data structure provides a solid foundation 

for statistical and machine learning analysis, 

enabling the identification of operational and 

quality patterns, analysis of energy and 

environmental efficiency, identification of 

opportunities for process improvement, and 

development of optimization strategies based on 

empirical evidence. 
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The dataset realistically simulates the challenges 

and opportunities of modern industrial 

production, providing a solid foundation for 

statistical analysis and data-driven decision-

making. 

 

3. Results   
 

Statistical and machine learning analysis applied 

to industrial data has revealed several significant 

findings that merit detailed interpretation: 

 

Correlation Analysis and Variable Selection 

 

The results show that the variables with the 

highest absolute correlation with the defect rate 

per million (PPM) are shown in Figure 1. 

 

 
Fig 1. Correlation with defect rate. 

 

Lead Time (0.0519): This correlation suggests 

that longer lead times may be associated with a 

higher risk of defects, which is consistent with 

operational literature indicating that variability 

in lead times can affect process quality. 

 

CO2 Emissions (0.0566): The correlation 

between environmental emissions and product 

quality is particularly relevant (Figure 2), 

indicating that more energy-intensive processes 

may be associated with a higher risk of defects. 

 
Fig 2. Correlation between environmental 

emissions and product quality. 

 

Variable Importance (Random Forest) 

 

Variable importance analysis using Random 

Forest reveals a clear hierarchy: 

 

Defect PPM (99.68%): As a target variable, this 

is expected and confirms the consistency of the 

model. 

 

MTBF (0.076%): Time between failures is the 

second most important variable, which is 

consistent with reliability theory, which 

indicates that equipment reliability directly 

affects product quality. 

 

Lead Time (0.043%): This variable maintains its 

importance in the Random Forest analysis, 

reinforcing the importance of logistics in process 

quality. 

 

Clustering Analysis 

Clustering analysis identified three distinct 

groups with significant operational and quality 

characteristics (Figure 3). 
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Fig 3. Cluster analysis. 

 

Cluster 1 (Defects: 36,379 PPM, Energy: 5.01): 

This group represents relatively stable processes 

with a moderate level of defects and energy 

consumption. 

 

Cluster 2 (Defects: 37,208 PPM, Energy: 4.93): 

This group shows a slightly higher level of 

defects but similar energy consumption, 

suggesting that the processes in this cluster could 

be energy-optimized, but at a cost in terms of 

quality. 

 

Cluster 3 (Defects: 31,504 PPM, Energy: 5.44): 

This group represents processes with better 

quality (fewer defects) but with higher energy 

consumption, which could indicate slower but 

more efficient processes. 

 

Predictive Model Performance 

 

The XGBoost model achieved a score of 1.0, 

indicating a perfect fit on the training data. 

However, it is important to note that this result 

could be biased by overfitting, suggesting the 

need to implement cross-validation in future 

analyses. 

 

Time Trend Analysis 

 

The time trend visualizations (Figure 4) show 

relative stability in the key operating variables, 

moderate variability in environmental metrics, 

and a lack of clear seasonal patterns in the defect 

rate. 

 
Fig 4. Visualizations of temporal trends. 

 

4. Discussion  
 

Statistical and machine learning analysis of 

industrial data provides relevant findings that 

reflect the complexity and interdependence of 

operational, environmental, and quality factors 

in advanced manufacturing environments. In the 

context of Latin America, where the adoption of 

Fourth Industrial Revolution technologies is 

progressively advancing [32], these results gain 

strategic importance for process optimization 

and data-driven decision-making. 

 

First, correlation analysis shows a positive, 

albeit moderate, relationship between lead time 

and the defect rate per million (PPM), 

suggesting that supply chain delays could 

compromise final product quality. This 

observation is consistent with the findings of 

those who point out that operational variability 

directly affects quality outcomes [20]. Similarly, 

the correlation between CO₂ emissions and 

quality suggests that energy-intensive processes 

not only present environmental challenges [33] 

but also implications for product stability, as has 

been documented in mining and industrial 

contexts in the region [34]. 

 

Variable importance analysis using Random 

Forest reinforces these relationships. The MTBF 

(Mean Time Between Failures) variable appears 

to be the most significant after the target variable 

(Defect PPM), underscoring the importance of 
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equipment reliability, a constant in the predictive 

maintenance literature. The fact that Lead Time 

remains relevant in this nonparametric model 

indicates that logistics efficiency continues to be 

a key determinant of quality, especially in 

regions where logistics challenges are structural 

[4]. 

 

Clustering analysis provides a differentiating 

approach by identifying three clearly distinct 

operational profiles. Cluster 3, with the lowest 

defect rate but the highest energy consumption, 

represents a classic dilemma in manufacturing: 

the dichotomy between quality and energy 

efficiency. This raises the question of the need 

for solutions based on artificial intelligence (AI) 

and the Internet of Things (IoT) that can achieve 

both objectives simultaneously, as has been 

proposed in Industry 4.0 in Latin America [35]. 

 

Regarding the performance of the predictive 

model, the perfect result of the XGBoost model 

(score = 1.0) should be interpreted with caution. 

Although it reveals high fitting power, it also 

suggests overfitting, a common limitation in 

non-regularized models with limited data sets 

[36]. This reinforces the need for more robust 

cross-validation and generalization tests, 

especially in sectors such as mining and 

manufacturing where contexts change 

dynamically [37]. 

 

Finally, the analysis of temporal trends shows 

relative operational stability, along with greater 

variability in environmental metrics. The 

absence of seasonal patterns in the defect rate 

could indicate that quality factors are more 

sensitive to internal process conditions than to 

external factors, a hypothesis that merits future 

exploration with multivariate models and 

higher-granularity time series [38]. 

 

In summary, the results support the need for 

integrated approaches that combine advanced 

analytics, sustainability, and digital 

transformation to improve industrial quality in 

Latin America. This not only responds to 

competitiveness demands but also to 

increasingly stringent regulatory and social 

frameworks [1][23]. 

 

5. Conclusions 
 

The results obtained reveal that quality in 

industrial processes, measured through the 

defect rate per million (PPM), is influenced by 

multiple operational and environmental factors 

that act interdependently. In particular, variables 

such as lead time and mean time between 

failures (MTBF) emerge as key determinants, 

highlighting the importance of efficient logistics 

management and predictive maintenance to 

reduce defects. 

 

Furthermore, the correlation between CO₂ 

emissions and the defect rate suggests that more 

energy-intensive processes could compromise 

quality, posing a challenge for industries seeking 

to balance environmental sustainability with 

productive performance. Clustering analysis 

provides a segmented view that allows for the 

identification of distinct operational profiles, 

facilitating group-specific interventions. 

 

The perfect performance of the XGBoost model 

warns of possible overfitting, highlighting the 

need to apply more robust validation techniques 

in future studies. Finally, the stability observed 

in the operational variables in the face of 

variability in the environmental indicators 

indicates that quality improvements must be 

accompanied by proactive and adaptive 

environmental management. 
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