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Abstract.- This study explores the application of data mining and machine learning techniques for industrial process 

optimization in Latin America, with an emphasis on the context of Industry 4.0. Using simulated data representative 

of real-life operations, advanced statistical methodologies were implemented, including imputation models, variable 

selection, principal component analysis (PCA), clustering, and predictive models such as XGBoost and SVM. The 

results reveal that variables such as lead time, mean time between failures (MTBF), and CO₂ emissions have a direct 

impact on the defect per million (PPM) rate, highlighting the interrelationship between logistical, maintenance, and 

environmental factors. The clustering analysis identified three operational profiles differentiated by energy efficiency 

and quality, facilitating targeted interventions. Despite the high performance of the XGBoost model, possible 

overfitting is noted, so cross-validation is recommended. Time trends did not show significant seasonality, suggesting 

a greater influence of internal process variables. The study concludes that the integration of advanced analytics, 

predictive maintenance, and artificial intelligence can significantly improve competitiveness, sustainability, and 

quality in Latin American manufacturing environments. 
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Resumen.- Este estudio explora la aplicación de técnicas de minería de datos y aprendizaje automático para la 

optimización de procesos industriales en América Latina, con énfasis en el contexto de la industria 4.0. A partir de 

datos simulados representativos de operaciones reales, se implementaron metodologías estadísticas avanzadas, 

incluyendo modelos de imputación, selección de variables, análisis de componentes principales (PCA), clustering y 

modelos predictivos como XGBoost y SVM. Los resultados revelan que variables como el tiempo de entrega (Lead 

Time), el tiempo medio entre fallas (MTBF) y las emisiones de CO₂ tienen impacto directo sobre la tasa de defectos 

por millón (PPM), destacando la interrelación entre factores logísticos, de mantenimiento y ambientales. El análisis 

de clustering permitió identificar tres perfiles operativos diferenciados por eficiencia energética y calidad, lo que 

facilita intervenciones focalizadas. A pesar del alto rendimiento del modelo XGBoost, se advierte posible sobreajuste, 

por lo que se recomienda validación cruzada. Las tendencias temporales no mostraron estacionalidad significativa, 

lo que sugiere una mayor influencia de variables internas del proceso. El estudio concluye que la integración de 

analítica avanzada, mantenimiento predictivo e inteligencia artificial puede mejorar significativamente la 

competitividad, sostenibilidad y calidad en los entornos manufactureros de América Latina. 
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1. Introducción  

 
La minería de datos para la optimización de 

procesos industriales en la fabricación 

latinoamericana representa un enfoque 

transformador para mejorar la eficiencia 

operativa y la competitividad en las industrias 

clave de la región. Originado en la década de 

1990, las técnicas de minería de datos han 

evolucionado significativamente, integrando 

metodologías avanzadas como el aprendizaje 

automático y la inteligencia artificial para 

analizar grandes conjuntos de datos [1].  

 

Esto ha permitido a los fabricantes de países 

como Brasil, Chile y Argentina descubrir 

patrones e ideas que impulsan la mejor toma de 

decisiones y la asignación de recursos dentro de 

sus procesos de producción [2]. 

 

La adopción de la minería de datos es 

particularmente notable en el contexto de 

América Latina, donde el sector manufacturero 

está experimentando un cambio hacia las 

tecnologías de la industria 4.0. Esta transición es 

estimulada por la necesidad de optimizar los 

procesos, reducir los costos y aumentar la 

productividad en medio de la creciente 

competencia global [3]. 

 

Las aplicaciones clave de la minería de datos en 

este sector incluyen mantenimiento predictivo, 

control de calidad y optimización de la cadena 

de suministro, que mejoran colectivamente la 

eficiencia operativa y minimizan el tiempo de 

inactividad. Sin embargo, desafíos como la 

calidad de los datos, la infraestructura 

tecnológica y la necesidad de trabajo calificado 

persisten, complicando la implementación de 

estas técnicas avanzadas [4]. 

 

Las controversias que rodean las prácticas de 

minería de datos en la región latinoamericana 

también merecen atención, particularmente en 

relación con consideraciones éticas como la 

privacidad de los datos y la transparencia. A 

medida que las organizaciones confían cada vez 

más en datos personales para impulsar ideas, 

surge el riesgo de comprometer la privacidad 

individual, lo que requiere estrictos protocolos 

de gestión de datos para cumplir con las 

diferentes regulaciones locales [5].  

 

Además, existe un debate en curso sobre los 

impactos socioeconómicos de estas tecnologías, 

incluido el potencial de desplazamiento laboral 

y la exacerbación de las desigualdades, 

destacando la necesidad de innovación 

responsable que se alinee con las necesidades de 

la comunidad [6]. 

 

A medida que los fabricantes latinoamericanos 

continúan navegando por estas complejidades, la 

integración de la extracción de datos en procesos 

industriales no solo representa una oportunidad 

para un rendimiento mejorado, sino que también 

plantea importantes desafíos éticos y 

socioeconómicos. Abordar estos problemas será 

crucial para garantizar que los beneficios de los 

datos. La optimización impulsada se distribuye 

de manera equitativa y contribuye al desarrollo 

sostenible dentro de la región [7]. 

 

Contexto histórico 

 

La minería de datos ha evolucionado 

significativamente a lo largo de las décadas, 

emergente como una herramienta fundamental 

para optimizar los procesos industriales, 

particularmente dentro del sector manufacturero 

latinoamericano. Sus raíces se remontan a la 

década de 1990 cuando las empresas 

comenzaron a aprovechar los poderosos recursos 

informáticos y las capacidades avanzadas de 

almacenamiento de datos para analizar grandes 

cantidades de información del cliente. 

 

Esto marcó un período transformador en el que 

las empresas reconocieron el potencial de la 

minería de datos para descubrir patrones y 

tendencias que podrían proporcionarles una 

ventaja competitiva en el mercado [8]. 
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En las primeras etapas, el enfoque de la minería 

de datos fue predominantemente en la gestión de 

la relación con el cliente, donde las empresas 

tenían como objetivo predecir el 

comportamiento del cliente y mejorar la 

prestación de servicios. A medida que la 

tecnología avanzó, también lo hicieron las 

técnicas empleadas en la minería de datos [9].  

 

La integración del aprendizaje automático y la 

inteligencia artificial en las prácticas de minería 

de datos permitió un análisis más sofisticado de 

conjuntos de datos complejos, permitiendo a las 

organizaciones obtener ideas procesables que 

anteriormente eran inalcanzables [10]. 

 

La participación de América Latina en la 

fabricación global también ha influido en la 

trayectoria histórica de la minería de datos en la 

región. Con la abundancia de recursos naturales 

como el litio, el carbón y el petróleo, países 

como Chile, Bolivia, y Argentina se han 

posicionado como jugadores clave en el paisaje 

de fabricación. A medida que estas naciones 

buscaron optimizar sus procesos industriales, la 

adopción de técnicas de minería de datos se 

volvió cada vez más relevante [11]. 

 

Además, el surgimiento de la Tecnología 

industria 4.0 en América Latina han acelerado 

aún más la necesidad de aplicaciones de minería 

de datos avanzadas. Los fabricantes han 

comenzado a reconocer que aprovechar los datos 

a través de la minería puede conducir a mejoras 

significativas en la eficiencia operativa, la 

segmentación del cliente y el mantenimiento 

predictivo, en última instancia, impulsando una 

mejor toma de decisiones [12]. 

 

El contexto histórico de la minería de datos 

refleja un cambio más amplio hacia un enfoque 

basado en datos en los procesos industriales. A 

medida que las empresas en América Latina 

continúan adaptando e integrando estas 

tecnologías, el legado de la minería de datos 

como un componente crítico de la toma de 

decisiones estratégicas probablemente dará 

forma al futuro de la fabricación en la región 

[13]. 

 

Técnicas de minería de datos 

 

La minería de datos abarca una variedad de 

técnicas y metodologías que se utilizan para 

extraer información valiosa de grandes 

conjuntos de datos, particularmente en el 

contexto de optimizar los procesos industriales 

en la fabricación latinoamericana. 

 

Descripción general de las técnicas de minería 

de datos 

 

Se emplean técnicas de minería de datos para 

identificar patrones, relaciones y tendencias 

dentro de extensos conjuntos de datos. Este 

proceso a menudo involucra varias etapas, 

incluida la limpieza de datos, el análisis de datos 

exploratorios, la construcción de modelos y la 

evaluación del modelo. Cada una de estas etapas 

utiliza algoritmos y métodos específicos para 

garantizar que la información extraída sea 

precisa y procesable [14]. 

 

Algoritmos comunes en la minería de datos 

 

Varios algoritmos prevalecen en el panorama de 

minería de datos, cada uno adaptado a diferentes 

tipos de tareas analíticas. Árboles de decisión: 

estos se utilizan para tareas de clasificación, lo 

que permite a los analistas hacer predicciones 

basadas en las características del conjunto de 

datos [15]. 

 

Clúster K-Means: esta técnica de aprendizaje no 

supervisada se emplea para segmentar datos en 

grupos distintos basados en atributos 

compartidos, 

haciéndolo útil para identificar segmentos de 

clientes o eficiencias de producción [16]. 
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Máquinas de vectores de soporte (SVM): se 

utiliza tanto para la regresión como para la 

clasificación, SVMS construye modelos 

correlacionando las características en un 

conjunto de datos a las clasificaciones de salida 

[17]. 

 

Clasificador ingenuo de Bayes: basado en el 

teorema de Bayes, este algoritmo es efectivo 

para la clasificación de datos categóricos y es 

conocido por su eficiencia computacional [18]. 

 

Bosques aleatorios: este método mejora la 

precisión de las predicciones al agregar los 

resultados de múltiples árboles de decisión, 

reduciendo así el riesgo de sobre ajustar [19]. 

 

Aplicaciones de fabricación 

 

En el sector manufacturero, las técnicas de 

minería de datos facilitan varias aplicaciones 

que mejoran significativamente la eficiencia 

operativa como el mantenimiento predictivo: al 

analizar los datos del sensor y los registros de 

rendimiento histórico, los fabricantes pueden 

anticipar las fallas de los equipos, reduciendo así 

los costos de tiempo de inactividad y 

mantenimiento en hasta un 50% [20].  

 

Optimización del proceso: la minería de datos 

ayuda a identificar cuellos de botella e 

ineficiencias dentro de las líneas de producción, 

permitiendo una mejor asignación de recursos y 

reducción de residuos [21]. 

 

Control de calidad: los algoritmos analizan las 

métricas de calidad y los datos del sensor para 

detectar defectos temprano en el proceso de 

producción, asegurando una mayor calidad del 

producto [22]. 

 

Gestión del inventario: Análisis predictivo 

pronostican la demanda y optimiza los niveles de 

inventario, reduciendo los costos de carga y 

mejorando la eficiencia de la cadena de 

suministro [23]. 

 

Desafíos y consideraciones 

 

Si bien la minería de datos presenta numerosos 

beneficios, también requiere una consideración 

cuidadosa de la calidad de los datos y el contexto 

del proyecto. El preprocesamiento efectivo es 

esencial para preparar los datos para la minería, 

asegurando que sea limpio y relevante para los 

objetivos del análisis. La colaboración con todas 

las partes interesadas durante esta etapa es 

crucial para definir qué datos para extraer y 

establecer los parámetros del proyecto 

apropiados. 

 

Aprovechando estas técnicas de minería de 

datos, los fabricantes latinoamericanos pueden 

transformar los datos sin procesar en ideas 

procesables, mejorando así su competitividad en 

un mercado global cada vez más basado en datos          

[24]. 

 

Aplicaciones en procesos industriales 

 

Recopilación y preparación de datos 

 

En el contexto de la minería de datos para 

procesos industriales, el paso inicial implica la 

recopilación y preparación de datos de eventos 

de varios sistemas de origen, como la 

planificación de recursos empresariales (ERP), 

la gestión de relaciones con el cliente (CRM), la 

gestión de la cadena de suministro (SCM) y los 

sistemas de ejecución de fabricación (MES). 

Esta fase es crucial ya que mapea los procesos 

relevantes. Sin embargo, la limpieza y la 

curación de los datos a menudo requiere una 

intervención manual, lo que puede llevar mucho 

tiempo e intensivo en recursos [25]. 

 

Análisis de minería de procesos 

 

Una vez que se preparan los datos, se emplean 

técnicas de minería de procesos para analizar los 

procesos reales. Este análisis tiene como 

objetivo visualizar y comprender modelos de 
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proceso, flujos de trabajo, métricas de 

rendimiento, e identificar los problemas 

existentes. Inicialmente, los métodos 

tradicionales deben usarse para garantizar que 

todo el equipo del proyecto se alinee en el 

proceso antes de aprovechar las técnicas 

avanzadas, incluida la IA generativa, la cual es 

esencial para generar nuevos modelos o 

variantes de procesos que optimizan los 

objetivos y requisitos definidos basados en los 

registros de eventos analizados [26]. 

 

Evaluación y validación de modelos de 

proceso 

 

Después de generar nuevos modelos o variantes 

de proceso, el siguiente paso es evaluar y validar 

estos modelos. Este proceso implica evaluar su 

viabilidad, efectividad y robustez, lo que 

requiere colaboración entre un equipo extendido 

para garantizar que todos los aspectos del 

proceso estén adecuadamente representados. El 

éxito de la minería de procesos se basa en gran 

medida en la calidad y la integridad de los 

registros de eventos, ya que los datos 

incompletos o inexactos pueden obstaculizar el 

proceso de implementación y los resultados 

sesgar [27]. 

 

 

Integración de IA generativa 

 

La incorporación de Genai en la minería de 

procesos presenta varias ventajas y desafíos. Si 

bien Genai puede automatizar la generación de 

sugerencias de optimización y nuevos modelos 

de proceso, requiere un conocimiento 

significativo de TI y puede requerir una 

capacitación extensa para los empleados. El 

potencial de resistencia organizacional al 

cambio también puede impedir la adopción de 

soluciones de Genai [28]. Sin embargo, cuando 

se implementa con éxito, Genai puede facilitar la 

optimización continua de los procesos 

comerciales, lo que permite ajustes en tiempo 

real en respuesta a las condiciones cambiantes. 

 

Beneficios y inconvenientes de los bots de 

minería de procesos 

 

La utilización de un BOT de Genai de minería 

de proceso puede mejorar significativamente la 

eficiencia operativa al reducir el esfuerzo 

manual y el error humano en las tareas de 

modelado y mejora de procesos. El bot puede 

ofrecer representaciones interactivas y visuales 

de los procesos comerciales, aumentando la 

transparencia y la comprensión [29].  

 

En cambio, las organizaciones pueden enfrentar 

desafíos relacionados con la resistencia cultural 

y la complejidad de la integración de nuevas 

tecnologías, lo que puede requerir una cuidadosa 

planificación y estrategias de gestión de cambios 

para garantizar la aceptación de las partes 

interesadas [30]. 

 

Mantenimiento predictivo y automatización 

 

El mantenimiento predictivo se destaca como 

una aplicación fundamental de la minería de 

datos en la fabricación. Al analizar los datos 

históricos de la máquina, los fabricantes pueden 

pronosticar fallas de equipos y programar el 

mantenimiento de manera proactiva, 

minimizando así el tiempo de inactividad y 

extendiendo la vida útil de la maquinaria [31].  

Además, las tecnologías de automatización están 

reemplazando cada vez más las operaciones 

manuales, especialmente en entornos duros, lo 

que mejora la seguridad y la eficiencia operativa 

dentro de los sectores mineros y metalurgias. 

 

2. Materiales y Métodos 

 
2.1 Modelos Estadísticos 

 

El presente análisis empleo una metodología 

estadística integral para la optimización de 

procesos industriales, combinando técnicas 

tradicionales con enfoques modernos de 

aprendizaje automático. La metodología se 
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estructuro en varios niveles de análisis, cada uno 

diseñado para abordar aspectos específicos de 

los procesos productivos. 

 

En primer lugar, la generación de datos se basó 

en distribuciones probabilísticas teóricas que 

reflejan la realidad operativa. Las variables 

operativas, como el tiempo de ciclo y el MTBF, 

se modelan mediante distribuciones normales y 

exponenciales, lo cual permite capturar tanto 

procesos estables como eventos raros. Las 

métricas ambientales y de calidad se representan 

mediante distribuciones beta y Poisson, 

respectivamente, asegurando así que los datos 

simulados reflejen la variabilidad inherente a los 

procesos industriales. 

 

El análisis estadístico comenzó con una rigurosa 

validación de las suposiciones de distribución. 

Se aplican pruebas no paramétricas como 

Kolmogorov-Smirnov para verificar el ajuste a 

distribuciones no normales, mientras que la 

prueba de Shapiro-Wilk se utilizó para confirmar 

la normalidad cuando es apropiado. Este proceso 

inicial es crucial para asegurar que las 

inferencias estadísticas posteriores se basen en 

supuestos válidos y que los modelos predictivos 

sean aplicables a los datos. 

 

En el procesamiento de datos, se implementaron 

dos técnicas avanzadas de imputación de datos 

faltantes: KNN Imputer y Iterative Imputer. El 

KNN Imputer utiliza la similitud entre 

observaciones para predecir valores faltantes, lo 

cual es particularmente útil cuando existe una 

estructura espacial o temporal en los datos. Por 

otro lado, el Iterative Imputer emplea un enfoque 

iterativo basado en regresión múltiple, lo que 

permite capturar relaciones más complejas entre 

las variables. 

 

La selección de variables se abordó mediante un 

enfoque multi-criterio que combina técnicas 

estadísticas y de machine learning. La 

correlación de Pearson se utiliza para identificar 

relaciones lineales significativas entre las 

variables, proporcionando una base inicial para 

la selección. El Random Forest, un método 

robusto de aprendizaje automático, ofrece una 

métrica de importancia de variables basada en la 

reducción de impureza, lo cual es 

particularmente útil para identificar variables 

con efectos no lineales o interacciones 

complejas. 

 

El análisis de componentes principales (PCA) se 

implementó como una técnica de reducción de 

dimensionalidad, permitiendo identificar las 

combinaciones lineales de variables que 

explican la mayor varianza en los datos. Esta 

técnica es especialmente relevante en el contexto 

industrial, donde a menudo se tienen múltiples 

variables correlacionadas que pueden ser 

reducidas a un conjunto más manejable de 

componentes principales. 

 

En cuanto al modelado predictivo, se emplearon 

dos enfoques complementarios: XGBoost y 

Support Vector Machine (SVM). XGBoost, un 

modelo de boosting avanzado, proporciona 

predicciones precisas mediante la combinación 

de múltiples árboles de decisión optimizados. 

Este enfoque es particularmente adecuado para 

problemas con múltiples variables predictoras y 

relaciones no lineales. El SVM, por su parte, 

ofrece una frontera de decisión óptima en un 

espacio de características transformado, lo cual 

es especialmente útil cuando las relaciones entre 

las variables son complejas y no lineales. 

 

El análisis de clustering se realizó mediante el 

algoritmo K-Means, que agrupa observaciones 

similares basándose en características operativas 

y ambientales. Esta técnica permite identificar 

patrones emergentes en los datos y proporciona 

una base para la toma de decisiones basada en 

perfiles de proceso similares. La elección del 

número de clusters (k=3) se basa en una 

evaluación de la estructura de los datos y la 

interpretabilidad de los grupos resultantes. 
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Las visualizaciones de datos juegan un papel 

crucial en la interpretación y comunicación de 

los resultados. Se implementan gráficos de 

tendencias temporales para analizar la evolución 

de los procesos, se hizo mediante mapas de calor 

para visualizar matrices de correlación, y 

diagramas de dispersión para representar la 

estructura de los clusters. Estas visualizaciones 

permiten una interpretación intuitiva de los 

patrones y relaciones en los datos, facilitando la 

toma de decisiones basada en evidencia 

empírica. 

 

Es importante destacar que los resultados del 

análisis se interpretaron dentro del contexto de 

sus limitaciones metodológicas. La correlación 

no implica causalidad, y los modelos predictivos 

están sujetos a variabilidad aleatoria. La 

interpretación de los clusters requiere considerar 

tanto las métricas estadísticas como el 

conocimiento del dominio industrial. 

 

2.2 Datos utilizados 

 

El presente análisis se basó en un conjunto de 

datos simulados que reflejan procesos 

industriales complejos, diseñados para capturar 

la variabilidad y dinámica inherentes a la 

producción moderna. Los datos están 

estructurados en tres categorías principales: 

variables operativas, métricas de calidad y 

métricas ambientales. 

 

Variables operativas 

 

Tiempo de Ciclo (Cycle Time): Se modelo 

mediante una distribución normal (μ=10, σ=2), 

representando el tiempo promedio necesario 

para completar una unidad de producción. Esta 

distribución refleja la variabilidad operativa 

típica en procesos productivos estables. 

 

Tiempo Entre Fallas (MTBF - Mean Time 

Between Failures): Utilizo una distribución 

exponencial (λ=1/100), lo cual es apropiado para 

eventos raros que siguen un proceso de Poisson. 

Esta métrica es crucial para la gestión de 

mantenimiento predictivo. 

 

Tiempo de Reparación (MTTR - Mean Time To 

Repair): También se modelo con una 

distribución exponencial (λ=1/10), reflejando la 

variabilidad en los tiempos de recuperación 

después de fallas. 

 

Consumo de Energía: Se represento mediante 

una distribución normal (μ=50, σ=5), lo cual es 

consistente con la variabilidad típica en el 

consumo energético industrial. 

 

Inventario: Se modelo con una distribución 

Poisson (λ=200), apropiada para contar unidades 

discretas de stock. 

 

Tiempo de Entrega (Lead Time): Utiliza una 

distribución normal (μ=5, σ=1), representando 

los tiempos promedio de entrega de materias 

primas o componentes. 

 

Métricas de calidad 

 

Defectos por Millón (PPM - Parts Per 

Million): Se modelo con una distribución beta 

(α=2, β=50) escalada a 1e6, lo cual es apropiado 

para representar tasas de defectos que tienden a 

ser bajas pero pueden variar significativamente. 

 

Cumplimiento de Especificaciones: Se 

represento mediante una distribución binomial 

(p=0.95), indicando el porcentaje de unidades 

que cumplen con las especificaciones técnicas 

requeridas. 

 

Métricas ambientales 

 

Emisiones de CO2: Se modelo con una 

distribución normal (μ=100, σ=20), reflejando la 

variabilidad en las emisiones de gases de efecto 

invernadero. 

 

https://doi.org/10.70577/c7273g40


 

 
REVISTA CIENTIFICA INNOVACIÓN INTEGRAL 
ISSN:  3103-1420 
DOI: https://doi.org/10.70577/c7273g40 

 

 

 

Uso de Agua: Se represento mediante una 

distribución normal (μ=30, σ=5), capturando la 

variabilidad en el consumo de agua industrial. 

 

Características temporales y espaciales 

 

Los datos se generan para un período de 5 años, 

con 100 muestras por año, proporcionando una 

base de datos robusta para el análisis de 

tendencias temporales y variabilidad estacional. 

Esta estructura temporal permite: identificar 

patrones de estacionalidad en los procesos 

operativos, analizar la evolución de las métricas 

de calidad a lo largo del tiempo, detectar 

tendencias en el rendimiento ambiental, evaluar 

la efectividad de las medidas de mejora 

implementadas. 

 

Estructura de correlación 

 

Las variables están diseñadas para reflejar 

relaciones realistas entre ellas, basadas en la 

experiencia industrial: 

 

Relaciones Operativas: El tiempo de ciclo 

estuvo moderadamente correlacionado con el 

consumo de energía. El MTBF y MTTR 

mostraron mu una relación inversa natural, El 

lead time tuvo una correlación positiva con el 

inventario. 

 

Relaciones de Calidad: Los defectos PPM están 

correlacionados con variables operativas 

críticas, el cumplimiento de especificaciones 

muestra una relación inversa con el número de 

defectos. 

 

Relaciones Ambientales: El consumo de energía 

estuvo fuertemente correlacionado con las 

emisiones de CO2. el uso de agua mostro una 

relación moderada con el consumo energético. 

 

Estructura de clusters 

 

El análisis de clustering identifica tres grupos 

principales de operaciones, cada uno con 

características distintivas: 

 

Cluster de Alta Eficiencia: tiempos de ciclo 

optimizados, bajo consumo energético, bajo 

nivel de defectos y bajo impacto ambiental. 

 

Cluster de Mediana Eficiencia: tiempos de ciclo 

promedio, consumo energético moderado, nivel 

medio de defectos e impacto ambiental 

moderado. 

 

Cluster de Baja Eficiencia: tiempos de ciclo 

largos, alto consumo energético, alto nivel de 

defectos y mayor impacto ambiental. 

 

Esta estructura de datos proporciona una base 

sólida para el análisis estadístico y de machine 

learning, permitiendo: identificar patrones 

operativos y de calidad, analizar la eficiencia 

energética y ambiental, detectar oportunidades 

de mejora en los procesos y desarrollar 

estrategias de optimización basadas en evidencia 

empírica. 

 

El conjunto de datos simula de manera realista 

los desafíos y oportunidades de la producción 

industrial moderna, proporcionando una base 

sólida para el análisis estadístico y la toma de 

decisiones basada en datos. 

 

3. Resultados  
 

El análisis estadístico y de machine learning 

aplicado a los datos industriales ha revelado 

varios hallazgos significativos que merecen una 

interpretación detallada: 

 

Análisis de correlación y selección de 

variables 

Los resultados muestran que las variables con 

mayor correlación absoluta con la tasa de 

defectos por millón (PPM) se muestran en a 

figura 1. 

 

https://doi.org/10.70577/c7273g40


 

 
REVISTA CIENTIFICA INNOVACIÓN INTEGRAL 
ISSN:  3103-1420 
DOI: https://doi.org/10.70577/c7273g40 

 

 

 

 
Fig 1. Correlación con tasa de defecto. 

 

Lead Time (0.0519): Esta correlación sugiere 

que los tiempos de entrega más largos pueden 

estar asociados con un mayor riesgo de defectos, 

lo cual es consistente con la literatura operativa 

que indica que la variabilidad en los tiempos de 

entrega puede afectar la calidad del proceso. 

 

Emisiones de CO2 (0.0566): La correlación entre 

las emisiones ambientales y la calidad del 

producto es particularmente relevante (Figura 

2), indicando que los procesos más intensivos en 

energía pueden estar asociados con un mayor 

riesgo de defectos. 

 

 
Fig 2. correlación entre las emisiones 

ambientales y la calidad del producto. 

 

 

Importancia de variables (random forest) 

 

El análisis de importancia de variables mediante 

Random Forest revela una jerarquía clara: 

 

Defect PPM (99.68%): Como variable objetivo, 

esto es esperado y confirma la consistencia del 

modelo. 

 

MTBF (0.076%): El tiempo entre fallas es la 

segunda variable más importante, lo cual es 

consistente con la teoría de confiabilidad que 

indica que la fiabilidad del equipo afecta 

directamente la calidad del producto. 

 

Lead Time (0.043%): Esta variable mantiene su 

importancia en el análisis de Random Forest, 

reforzando la importancia de la logística en la 

calidad del proceso. 

 

Análisis de clustering 

 

El análisis de clustering ha identificado tres 

grupos distintos con características operativas y 

de calidad significativas (Figura 3). 

 

 
Fig 3. Análisis de cluster. 

 

Cluster 1 (Defectos: 36,379 PPM, Energía: 

5.01): Este grupo representa procesos 

relativamente estables con un nivel moderado de 

defectos y consumo energético. 

 

Cluster 2 (Defectos: 37,208 PPM, Energía: 

4.93): Este grupo muestra un nivel ligeramente 
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más alto de defectos pero con un consumo 

energético similar, lo cual sugiere que los 

procesos en este cluster podrían estar 

optimizados energéticamente pero con un costo 

en términos de calidad. 

 

Cluster 3 (Defectos: 31,504 PPM, Energía: 

5.44): Este grupo representa procesos con mejor 

calidad (menos defectos) pero con un mayor 

consumo energético, lo cual podría indicar 

procesos más lentos pero más cuidadosos. 

 

Rendimiento del modelo predictivo 

 

El modelo XGBoost alcanzó un score de 1.0, lo 

cual indica un ajuste perfecto en los datos de 

entrenamiento. Sin embargo, es importante tener 

en cuenta que este resultado podría estar sesgado 

por el sobreajuste, lo cual sugiere la necesidad 

de implementar validación cruzada en futuros 

análisis. 

 

Análisis de tendencias temporales 

 

Las visualizaciones de tendencias temporales 

(Figura 4), muestran: estabilidad relativa en las 

variables operativas principales, variabilidad 

moderada en las métricas ambientales y ausencia 

de patrones estacionales claros en la tasa de 

defectos. 

 

 
Fig 4. visualizaciones de tendencias temporales. 

 

4. Discusión  
 

El análisis estadístico y de aprendizaje 

automático realizado sobre datos industriales 

proporciona hallazgos relevantes que reflejan la 

complejidad e interdependencia de los factores 

operativos, ambientales y de calidad en entornos 

de manufactura avanzada. En el contexto de 

América Latina, donde la adopción de 

tecnologías de la Cuarta Revolución Industrial 

avanza progresivamente [32], estos resultados 

cobran una importancia estratégica para la 

optimización de procesos y la toma de 

decisiones basada en datos. 

 

En primer lugar, el análisis de correlación 

evidencia una relación positiva, aunque 

moderada, entre el Lead Time y la tasa de 

defectos por millón (PPM), lo que sugiere que 

demoras en la cadena de suministro podrían 

comprometer la calidad final del producto. Esta 

observación coincide con los hallazgos de 

quienes señalan que la variabilidad operativa 

afecta directamente los resultados de calidad 

[20]. De manera similar, la correlación entre las 

emisiones de CO₂ y la calidad sugiere que 

procesos con alta intensidad energética no solo 

presentan desafíos ambientales [33], sino 

también implicaciones para la estabilidad del 

producto, lo cual ha sido documentado en 

contextos mineros e industriales en la región 

[34]. 

 

El análisis de importancia de variables mediante 

Random Forest refuerza estas relaciones. La 

variable MTBF (tiempo medio entre fallas) 

aparece como la más significativa después de la 

variable objetivo (Defect PPM), subrayando la 

importancia de la confiabilidad de los equipos, 

una constante en la literatura de mantenimiento 

predictivo. El hecho de que Lead Time conserve 

su relevancia en este modelo no paramétrico 

indica que la eficiencia logística continúa siendo 

un determinante clave de calidad, especialmente 

en regiones donde los desafíos logísticos son 

estructurales [4]. 

 

El análisis de clustering aporta un enfoque 

diferenciador, al identificar tres perfiles 

operativos claramente distintos. El Cluster 3, 
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con la menor tasa de defectos pero mayor 

consumo energético, representa un dilema 

clásico en manufactura: la dicotomía entre 

calidad y eficiencia energética. Esto plantea una 

reflexión sobre la necesidad de soluciones 

basadas en inteligencia artificial (IA) y el 

Internet de las Cosas (IoT), que permitan 

alcanzar ambos objetivos de manera simultánea, 

como se ha propuesto en industrias 4.0 de 

América Latina [35]. 

 

En cuanto al desempeño del modelo predictivo, 

el resultado perfecto del modelo XGBoost (score 

= 1.0) debe interpretarse con cautela. Aunque 

revela un alto poder de ajuste, también sugiere 

sobreajuste (overfitting), una limitación común 

en modelos no regularizados con conjuntos de 

datos limitados [36]. Esto refuerza la necesidad 

de validación cruzada y pruebas de 

generalización más robustas, especialmente en 

sectores como la minería y manufactura donde 

los contextos cambian dinámicamente [37]. 

 

Finalmente, el análisis de tendencias temporales 

muestra una relativa estabilidad operativa, junto 

con una mayor variabilidad en métricas 

ambientales. La ausencia de patrones 

estacionales en la tasa de defectos podría indicar 

que los factores de calidad son más sensibles a 

condiciones internas del proceso que a factores 

externos, una hipótesis que merece futuras 

exploraciones con modelos multivariantes y 

series temporales de mayor granularidad [38]. 

 

En síntesis, los resultados respaldan la necesidad 

de enfoques integrados que combinen analítica 

avanzada, sustentabilidad y transformación 

digital para mejorar la calidad industrial en 

América Latina. Ello no solo responde a 

exigencias de competitividad, sino también a 

marcos regulatorios y sociales cada vez más 

exigentes [1][23]. 

 

5. Conclusiones 
 

Los resultados obtenidos revelan que la calidad 

en los procesos industriales, medida a través de 

la tasa de defectos por millón (PPM), está 

influenciada por múltiples factores operativos y 

ambientales que actúan de manera 

interdependiente. En particular, variables como 

el Lead Time y el tiempo medio entre fallas 

(MTBF) emergen como determinantes clave, 

destacando la importancia de una gestión 

eficiente de la logística y del mantenimiento 

predictivo para reducir defectos. 

 

Asimismo, la correlación entre las emisiones de 

CO₂ y la tasa de defectos sugiere que los 

procesos más intensivos en energía podrían 

comprometer la calidad, lo cual plantea un reto 

para las industrias que buscan equilibrar 

sostenibilidad ambiental con desempeño 

productivo. El análisis de clustering aporta una 

visión segmentada que permite identificar 

perfiles operativos distintos, facilitando 

intervenciones específicas por grupo. 

El desempeño perfecto del modelo XGBoost 

alerta sobre un posible sobreajuste, lo cual 

resalta la necesidad de aplicar técnicas de 

validación más robustas en futuros estudios. 

Finalmente, la estabilidad observada en las 

variables operativas frente a la variabilidad de 

los indicadores ambientales indica que las 

mejoras en calidad deben acompañarse de una 

gestión ambiental proactiva y adaptable. 
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