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Abstract.- This article explores the transformation of electricity grids in Latin America through the integration of 

artificial intelligence (AI). With energy demand expected to triple by 2050, AI is crucial for optimizing efficiency, 

reliability, and the integration of renewable energy. Countries such as Brazil, Mexico, and Chile are leading this 

adoption, using AI to manage distribution, balance supply and demand, and improve grid reliability. The study 

highlights that linear regression models predict energy efficiency with high accuracy (R2 = 0.86), influenced by 

consumption, generation, and weather conditions. Optimization classification models achieve an accuracy close to 

100%, while risk classification shows mixed results, with difficulties in minority classes, suggesting the need for data 

balancing. K-Means clustering identified three geographic segments of the grid with distinct operational and 

maintenance characteristics. ARIMA and LSTM models demonstrate a robust ability to predict energy demand and 

consumption, capturing complex temporal patterns. Linear optimization demonstrated effective balancing of energy 

distribution across diverse sources, and identified the potential for heuristic algorithms for future improvements. 

Despite challenges such as class imbalance in risk data, the need for more robust fault prediction models, and dynamic 

data integration, AI offers a promising path toward more efficient, resilient grids with greater customer satisfaction. 

 

Keywords: Artificial intelligence, machine learning, models, optimization, networks. 

 

Resumen.- El artículo explora la transformación de las redes eléctricas en América Latina mediante la integración 

de la inteligencia artificial (IA). Ante una demanda energética que se triplicará para 2050, la IA se vuelve crucial para 

optimizar la eficiencia, confiabilidad e integración de energías renovables. Países como Brasil, México y Chile 

lideran esta adopción, utilizando IA para gestionar la distribución, equilibrar la oferta y demanda, y mejorar la 

fiabilidad de la red.El estudio destaca que los modelos de regresión lineal predicen la eficiencia energética con alta 

precisión (R2 =0.86), influenciados por el consumo, generación y condiciones meteorológicas. Los modelos de 

clasificación de optimización alcanzan una precisión cercana al 100% , mientras que la clasificación de riesgo 

muestra resultados mixtos, con dificultades en clases minoritarias, sugiriendo la necesidad de balanceo de datos. El 

clustering K-Means identificó tres segmentos geográficos de la red con distintas características operativas y de 

mantenimiento. Los modelos ARIMA y LSTM demuestran una robusta capacidad para predecir la demanda y el 

consumo energético, capturando patrones temporales complejos. La optimización lineal demostró un balance efectivo 

en la distribución de energía entre diversas fuentes, y se identificó el potencial de algoritmos heurísticos para futuras 

mejoras.A pesar de los desafíos como el desequilibrio de clases en los datos de riesgo, la necesidad de modelos de 

predicción de fallas más robustos y la integración dinámica de datos, la IA ofrece un camino prometedor hacia redes 

más eficientes, resilientes y con mayor satisfacción del cliente. 

 

Palabras clave: Inteligencia Artificial , Machine Laerning, Modelos, Optimización, Redes.  

 

 

 

https://doi.org/10.70577/213ara83
https://orcid.org/0000-0003-0480-5669


 

 
REVISTA CIENTIFICA INNOVACIÓN INTEGRAL 
ISSN:  3103-1420 
DOI: https://doi.org/10.70577/213ara83 

 

 

 

1. Introducción 

 
La integración de la inteligencia artificial (IA) en 

redes eléctricas inteligentes está transformando 

el panorama energético en América Latina, una 

región que enfrenta desafíos y oportunidades 

significativas en su búsqueda de soluciones 

energéticas sostenibles. A medida que los países 

anticipan un aumento triple de la demanda de 

energía para 2050, la optimización de las redes 

eléctricas a través de las tecnologías de IA se ha 

vuelto crucial para mejorar la eficiencia, la 

confiabilidad y la incorporación de fuentes de 

energía renovables [1]. 

 

Este desarrollo no solo aborda la necesidad 

urgente de modernización en la infraestructura 

energética, sino que también refleja un 

compromiso más amplio con la sostenibilidad 

ambiental y el crecimiento económico en el 

mundo [2]. 

 

Los países notables, como Brasil, México y 

Chile, están a la vanguardia de esta 

transformación, aprovechar la IA para mejorar el 

manejo de la red, optimizar la distribución de 

energía y mejorar la integración de fuentes 

renovables intermitentes como la energía solar y 

eólica [3]. Por ejemplo, la red nacional de Brasil 

utiliza cada vez más IA para administrar las 

salidas de energía variables, mientras que Chile 

está empleando algoritmos de IA para equilibrar 

la oferta y la demanda de manera efectiva, 

reducción de interrupciones y mejora de la 

fiabilidad de la red. 

 

Sin embargo, la integración de la IA también 

presenta desafíos significativos, incluidos los 

obstáculos regulatorios, las preocupaciones de 

privacidad de los datos y la necesidad de 

medidas sólidas de ciberseguridad [4].  

 

Los beneficios potenciales de utilizar la IA en las 

redes inteligentes son sustanciales, desde una 

mejor eficiencia operativa hasta un mejor 

mantenimiento predictivo y la optimización 

económica dentro del sector energético. A 

medida que evolucionan las tecnologías de IA, 

facilitan los procesos de toma de decisiones 

basados en datos, ayudando a los servicios 

públicos a administrar mejor los recursos y 

responder a las fluctuaciones en la oferta y 

demanda de energía [5].  

 

Sin embargo, la implementación exitosa de 

soluciones de IA requiere abordar 

consideraciones éticas y barreras sistémicas que 

puedan obstaculizar el progreso, asegurando que 

la transición a los sistemas de energía 

impulsados por la IA sea equitativo y sostenible 

para todas las partes interesadas involucradas 

[6].  

 

Los esfuerzos continuos para aprovechar la IA 

para la optimización de las redes eléctricas 

inteligentes en América Latina subrayan el 

compromiso de la región con un futuro de 

energía sostenible                       [7]. Fomentando 

la innovación, mejorar la gestión de la energía y 

abordar los desafíos existentes, los países 

latinoamericanos se están posicionando no solo 

para satisfacer las crecientes demandas de 

energía, sino también para convertirse en líderes 

en la transición global a fuentes de energía 

renovable y sistemas de energía inteligente.  

 

La evolución de las redes eléctricas ha sufrido 

una transformación significativa de los sistemas 

centralizados a las "redes inteligentes" 

avanzadas de hoy, en gran medida impulsadas 

por avances tecnológicos y la necesidad de 

eficiencia y sostenibilidad [8]. Inicialmente 

diseñado para una entrega simple de energía, las 

redes tradicionales enfrentaron limitaciones en 

confiabilidad y escalabilidad. 

 

Esto provocó un cambio hacia redes 

descentralizadas, donde la inteligencia artificial 

(IA) ha desempeñado un papel fundamental en 

la mejora de la eficiencia operativa, la seguridad 

y la resistencia a través del análisis de datos en 

tiempo real y los sistemas automatizados [9].  
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Edge Computing, un concepto que surgió a fines 

de la década de 1990 y ganó prominencia a 

mediados de los 2010, ha sido fundamental para 

minimizar la latencia y el uso de ancho de banda 

procesando datos más cercanos a su fuente [10]. 

 

Este enfoque tecnológico es particularmente 

relevante en el contexto del creciente Internet de 

las cosas (IoT) y la creciente demanda de 

procesamiento de datos en tiempo real en los 

sistemas de energía modernos. En América 

Latina y el Caribe, el sector energético está 

actualmente experimentando una 

transformación significativa, con un enfoque en 

la integración de fuentes de energía renovables 

junto con las tradicionales [11]. A medida que 

los países de la región anticipan un triple 

aumento de la demanda de energía para 2050, la 

necesidad urgente de acelerar la adopción de las 

energías renovables mientras equilibra el 

crecimiento económico es crítico. 

 

Brasil ejemplifica esta transición, ya que la 

energía renovable ha comenzado a potenciar más 

del 50% de su consumo nacional, mostrando el 

potencial de prácticas sostenibles en la región. 

La modernización de las redes eléctricas es 

esencial para acomodar la afluencia de energía 

renovable. Sin embargo, los desafíos como la 

infraestructura de transmisión inadecuada 

persisten, lo que puede conducir a cuellos de 

botella de energía y problemas de precios en 

varios mercados de electricidad nodal [12].  

 

Para abordar estos desafíos, las redes 

inteligentes, caracterizadas por la 

automatización inteligente y la gestión de 

energía predictiva, se están adoptando para 

mejorar la estabilidad de la red y optimizar la 

distribución de energía, asegurando que la red 

eléctrica pueda satisfacer las demandas 

modernas sin comprometer la confiabilidad [13]. 

 

Las tecnologías de IA y el aprendizaje 

automático son fundamentales para esta 

evolución, habilitar el monitoreo mejorado, el 

mantenimiento predictivo y la integración 

eficiente de fuentes renovables, que en última 

instancia conduce a una red eléctrica más 

adaptable y eficiente [14]. 

 

Los esfuerzos continuos para utilizar estas 

tecnologías reflejan un compromiso de fomentar 

un futuro de energía sostenible en América 

Latina, equilibrar la diversa matriz energética de 

la región y promover la innovación tecnológica 

[15]. 

 

Políticas gubernamentales que apoyan la 

integración de IA 

 

 

La integración exitosa de la inteligencia artificial 

(IA) en las redes eléctricas inteligentes requiere 

políticas gubernamentales sólidas que faciliten 

la innovación al tiempo que aborda los posibles 

desafíos. Estas políticas deben estar alineadas 

con el paisaje en rápida evolución de las 

tecnologías energéticas y la creciente demanda 

de prácticas sostenibles en el sector energético 

[16].Un marco regulatorio integral es esencial 

para establecer estándares que promuevan la 

interoperabilidad, la seguridad y el uso ético de 

la IA en los sistemas de energía . 

 

Mejoras regulatorias 

 

Se insta a los gobiernos a revisar los marcos 

regulatorios existentes para acomodar mejor las 

aplicaciones de IA en redes inteligentes. Esto 

incluye actualizar las políticas para garantizar 

que los sistemas de IA puedan comunicarse de 

manera efectiva con la infraestructura de la red 

tradicional [17].  

 

Un grupo de trabajo dedicado puede optimizar la 

implementación y la aplicación de estas 

políticas, coordinando los esfuerzos entre varios 

organismos regulatorios, como los ministerios 

de energía y las comisiones reguladoras. 

Además, las aprobaciones regulatorias para los 
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servicios impulsados por la IA deben ser 

aceleradas para fomentar la innovación oportuna 

en los mercados de energía digital [18]. 

 

Promoción de asociaciones público-privadas 

 

Las asociaciones público-privadas (PPP) son 

críticas para impulsar la innovación dentro del 

sector energético. Al colaborar con entidades del 

sector privado, los gobiernos pueden aprovechar 

la experiencia de los desarrolladores de 

tecnología de IA al tiempo que garantizan el 

cumplimiento de los estándares legales]. Las 

políticas deben incentivar la investigación y el 

desarrollo en soluciones energéticas impulsadas 

por la IA, promoviendo así un ecosistema 

propicio para la integración de fuentes de 

energía renovables en la red. 

 

Estas colaboraciones son vitales para abordar las 

complejidades asociadas con las 

implementaciones de IA a gran escala en la 

infraestructura energética, particularmente en 

relación con la privacidad de los datos y la 

ciberseguridad [19]. 

 

Ciberseguridad y estándares éticos 

 

A medida que el uso de IA se expande dentro del 

sector energético, la implementación de los 

estándares de ciberseguridad se vuelve 

imprescindible para proteger la infraestructura 

crítica. Los gobiernos deben adoptar estándares 

internacionales y exigir evaluaciones regulares 

de vulnerabilidad para compañías energéticas                 

[20]. 

 

Además, los desafíos éticos asociados con la IA, 

como el sesgo y la transparencia en los procesos 

de toma de decisiones, deben abordarse a través 

de marcos de gobernanza que garanticen la 

equidad y la responsabilidad en las aplicaciones 

de IA               [21]. 

 

Apoyo a los objetivos de desarrollo sostenible 

 

La integración de la IA en las redes inteligentes 

está estrechamente vinculada al logro de 

Objetivos de Desarrollo Sostenible (ODS), 

particularmente en el contexto de la acción 

climática y el consumo responsable. Las 

políticas que fomentan el uso de IA para 

optimizar el consumo de energía y minimizar los 

desechos pueden reducir significativamente las 

emisiones de carbono y reforzar los esfuerzos 

para combatir el cambio climático [22]. 

 

Alineando iniciativas de IA con objetivos de 

sostenibilidad, los gobiernos pueden crear un 

sistema de energía más resistente y eficiente que 

beneficie a los consumidores y al medio 

ambiente [23]. 

 

Tecnologías de inteligencia artificial 

 

La aplicación de tecnologías de inteligencia 

artificial (IA) en redes eléctricas inteligentes está 

transformando los sistemas de energía, 

particularmente en América Latina [24], donde 

existe una creciente necesidad de soluciones 

eficientes de gestión de energía. Esta sección 

describe las técnicas clave de IA empleadas para 

optimizar las operaciones en redes inteligentes, 

destacando sus roles en la mejora de la eficiencia 

energética y el apoyo a la integración de energía 

renovable. 

 

Aprendizaje automático en cuadrículas 

inteligentes 

 

El aprendizaje automático (ML) ha surgido 

como un componente fundamental en la 

optimización de las redes inteligentes, que 

ofrece metodologías robustas para analizar 

conjuntos de datos extensos y automatizar 

procesos de toma de decisiones. Técnicas de ML 

como el aprendizaje supervisado, incluidas la 

regresión lineal y las máquinas de vectores de 

soporte, se aplican comúnmente para el 

pronóstico de carga y la gestión de la respuesta a 

la demanda [25]. 
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Estos modelos permiten a los servicios públicos 

predecir patrones de consumo de energía, que es 

esencial para equilibrar la oferta y la demanda en 

tiempo real. Además, ML facilita el desarrollo de 

estrategias que mejoran la eficiencia energética 

al optimizar la calefacción, ventilación y 

sistemas de aire acondicionado en edificios 

inteligentes, así como programación de procesos 

industriales para minimizar los desechos [26]. 

 

En particular, las implementaciones del mundo 

real de ML en distribución y almacenamiento de 

energía han demostrado mejoras significativas 

en la eficiencia operativa y la experiencia del 

cliente [27]. 

 

Análisis de datos y análisis predictivo 

 

La integración de las tecnologías de IA en las 

redes eléctricas inteligentes requiere 

capacidades sofisticadas de análisis de datos. 

Los algoritmos de IA pueden procesar grandes 

volúmenes de datos de diversas fuentes de 

energía, lo que permite a los servicios públicos 

emplear análisis predictivos para anticipar 

escenarios operativos. Al utilizar diversas 

formas de análisis, los operadores de la Grid de 

Analítica, descriptivo, diagnóstico, predictivo y 

prescriptivo, pueden mejorar sus procesos de 

toma de decisiones y abordar preventivamente 

problemas potenciales [28]. 

 

Sin embargo, los desafíos relacionados con la 

calidad de los datos persisten, ya que muchos 

modelos a menudo están capacitados en 

conjuntos de datos sintéticos debido al acceso 

limitado a datos operativos reales. Los esfuerzos 

para mejorar los métodos de recopilación de 

datos y desarrollar conjuntos de datos 

multimodales de alta calidad son críticos para 

mejorar la precisión y efectividad de las 

aplicaciones de IA en los sistemas de energía 

[29]. 

 

Optimización de sistemas de energía 

renovable 

 

Las tecnologías de IA juegan un papel crucial en 

la optimización de los sistemas de energía 

renovable (RES), que son vitales para la 

transición hacia soluciones de energía 

sostenibles. Las técnicas de ML se aplican en 

varias aplicaciones RE, incluidas las solares, el 

viento y los sistemas de residuos de energía, para 

predecir el rendimiento y mejorar los parámetros 

operativo. Por ejemplo, se han utilizado modelos 

de aprendizaje automático para mejorar la 

eficiencia de los sistemas municipales de 

residuos sólidos a la energía, lo que demuestra la 

versatilidad de la tecnología en abordar los 

desafíos ambientales al tiempo que optimiza la 

producción de energía  [30]. 

 

Aplicaciones de IA en redes inteligentes 

 

Las tecnologías de IA juegan un papel 

fundamental en la mejora de la eficiencia, 

confiabilidad y sostenibilidad de las redes 

inteligentes en diversas aplicaciones. Estas 

aplicaciones abordan desafíos críticos asociados 

con la gestión de la energía y la integración de 

fuentes de energía renovables [31]. 

 

Optimización de la distribución de energía 

 

Las redes inteligentes impulsadas por IA 

optimizan la distribución de energía, lo que 

ayuda a reducir las pérdidas de energía y 

prevenir interrupciones. mediante el uso de 

medidores inteligentes y sistemas de respuesta a 

la demanda, la IA analiza los patrones de 

consumo para facilitar el equilibrio de carga en 

tiempo real, asegurando un flujo de energía 

eficiente en toda la red [32]. 

 

Esta optimización es particularmente crucial a 

medida que más consumidores adoptan recursos 

energéticos distribuidos, tales como paneles 

solares en la azotea y sistemas de 

almacenamiento de baterías [33]. 

 

Gestión de interrupciones mejoradas 
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Una de las aplicaciones significativas de la IA en 

las redes inteligentes es la mejora de los sistemas 

de gestión de interrupciones. AI mejora las 

alertas de interrupción a través de sofisticadas 

redes de sensores que proporcionan datos en 

tiempo real, 

permitiendo que los servicios públicos predecan 

y respondan a las interrupciones de manera más 

efectiva. Por ejemplo, la IA puede identificar 

posibles interrupciones antes de que ocurran, 

proporcionando a los operadores alertas que 

diferencian entre interrupciones individuales, 

callejeras y zonales . Esta capacidad permite una 

restauración más rápida de los servicios y una 

mejor confiabilidad [34]. 

 

Pronóstico de carga avanzada 

 

El pronóstico de carga preciso es esencial para 

una gestión efectiva de la red, especialmente con 

la variabilidad introducida por las fuentes de 

energía renovable. AI permite a los servicios 

públicos utilizar modelos de análisis predictivos 

que combinan datos de infraestructura de 

medición avanzada (AMI) para generar 

pronósticos más confiables de cargas de energía 

y generación de energía renovable  [35].Este 

nivel de precisión es crítico para gestionar las 

fluctuaciones en la demanda y la oferta, que a 

menudo están representados por el fenómeno de 

la "curva de pato". 

 

Integración de fuentes de energía renovable 

 

A medida que las fuentes de energía renovables 

como el viento y la energía solar se vuelven más 

frecuentes, la IA ayuda a su integración perfecta 

a la red eléctrica. Las tecnologías de IA ayudan 

a administrar la naturaleza intermitente de estas 

fuentes de energía al optimizar la generación y 

el almacenamiento, habilitando el cambio de 

carga efectivo y el equilibrio de la producción de 

energía con el consumo [36]. 

 

La incorporación de dispositivos de 

almacenamiento de energía, respaldados por AI, 

mejora aún más la resiliencia de la red al permitir 

el almacenamiento de energía excedente durante 

los tiempos de producción máximos [37]. 

 

Ciberseguridad y resiliencia 

 

La IA también juega un papel vital en la mejora 

de la ciberseguridad de las redes inteligentes. 

Con la creciente digitalización de los sistemas de 

energía, las soluciones impulsadas por IA 

pueden identificar y responder a posibles 

amenazas cibernéticas, asegurando la integridad 

y la seguridad de las operaciones de la red  [38]. 

Medidas de seguridad robustas, los canales de 

comunicación cifrados y los mecanismos de 

defensa avanzados son esenciales para proteger 

la red de las vulnerabilidades. 

 

Integración de vehículos eléctricos 

 

La creciente adopción de vehículos eléctricos 

(EV) presenta desafíos y oportunidades para 

redes inteligentes. AI facilita la gestión de la 

carga dinámica al habilitar, coordinación del 

tiempo de la carga y descarga de EV, lo que 

ayuda a reducir el estrés de carga máxima y 

mejorar la eficiencia energética  [39]. 

 

La tecnología de vehículo a red (V2G), 

alimentada por IA, permite a los EV devolver la 

energía almacenada a la red durante la demanda 

máxima, optimizar el uso general de energía e 

integrar los recursos renovables de manera más 

efectiva [40]. 

 

 Considerando las experiencias positivas de la 

inteligencia artificial en el manejo energético, el 

objetivo de esta investigación es demostrar su 

importancia para la Optimización de Redes 

Eléctricas en Latinoamérica y conducir a un 

manejo sostenible de los recursos naturales. 

 

2. Materiales y Métodos 
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2.1 Modelos Estadísticos 

 

Regresión Lineal Múltiple 

 

Se implementó un modelo de regresión lineal 

múltiple para predecir la eficiencia energética de 

la red eléctrica. Las variables predictoras 

incluyen:  Consumo de energía (kWh), 

generación de energía (kWh), condiciones 

meteorológicas (temperatura, humedad, 

velocidad del viento, radiación solar) y  

características del equipo (edad, puntaje de 

mantenimiento, estado del transformador, 

condición del cable). 

 

Regresión Logística 

 

Se aplicó regresión logística para dos propósitos: 

clasificación de riesgo de falla en la red y  

clasificación de potencial de optimización. 

 

ARIMA (Autoregressive Integrated Moving 

Average) Se implementó un modelo ARIMA 

para predecir la demanda de energía y la 

generación de energía. El modelo identificó 

patrones temporales significativos en los datos, 

con coeficientes estadísticamente significativos 

para los términos AR (Lag 1-5). 

 

Redes Neuronales Recurrentes (RNN) con 

LSTM  

Se desarrolló un modelo LSTM para predecir el 

consumo de energía, utilizando secuencias 

temporales de datos. El modelo mostró un 

rendimiento sólido con un RMSE de 51.5277 

kWh, demostrando su capacidad para capturar 

patrones complejos en los datos de consumo. 

 

Clustering con K-Means 

 

Se aplicó K-Means para agrupar subestaciones y 

puntos de distribución según su rendimiento y 

características geográficas. Los resultados 

mostraron tres clusters distintos con 

características significativas: cluster 0: Latitud 

media (-17.43), tiempo de respuesta 13.83 

minutos, cluster 1: Latitud positiva (4.90), 

tiempo de respuesta 13.60 minutos, cluster 2: 

Latitud negativa (-20.67), tiempo de respuesta 

14.23 minutos. 

 

Optimización 

Se implementaron dos enfoques de 

optimización: programación Lineal: Para 

optimizar la distribución de energía entre 

diferentes fuentes (solar, eólica, térmica) y  

optimización Heurística: Se discutieron los 

conceptos de Algoritmos Genéticos y 

Optimización por Enjambre de Partículas como 

enfoques potenciales para problemas de 

optimización complejos. 

 

2.2 Datos utilizados 

 

El conjunto de datos simulado contuvo 

información detallada sobre el funcionamiento 

de una red eléctrica inteligente en 

Latinoamérica, generada para un período de 5 

años (2020-2025) con una frecuencia horaria. El 

dataset consta de 5000 registros y 20 variables. 

 

Variables Principales 

 

Variables de Consumo y Generación: 

energy_consumption_kWh`: Consumo de 

energía en kilovatios-hora, 

energy_generation_kWh`: Generación de 

energía total en kilovatios-hora, 

energy_demand_kWh`: Demanda de energía en 

kilovatios-hora, energy_efficiency`: Eficiencia 

energética del sistema y  

`energy_losses_percent`: Porcentaje de pérdidas 

energéticas. 

 

Variables Meteorológicas: temperature_C`: 

Temperatura ambiente en grados Celsius, 

humidity_percent`: Porcentaje de humedad 

relativa, `wind_speed_mps`: Velocidad del 

viento en metros por segundo y 

`solar_radiation_Wm2`: Radiación solar en 

vatios por metro cuadrado. 
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Variables de Estado del Sistema: 

equipment_age_years`: Edad de los equipos en 

años, maintenance_score`: Puntaje de 

mantenimiento (0-1), `transformer_status`: 

Estado del transformador (0: Normal, 1: 

Advertencia, 2: Falla) y `cable_condition`: 

Condición del cable (0: Bueno, 1: Desgastado). 

 

Variables Geográficas: `latitude`: Latitud 

geográfica, longitude`: Longitud geográfica y 

altitude_m`: Altitud en metros. 

 

Variables de Operación: 

`response_time_minutes`: Tiempo de respuesta 

a incidentes en minutos, 

operational_cost_USD`: Costo operativo en 

dólares y customer_satisfaction`: Índice de 

satisfacción del cliente (0-1). 

 

Características del Conjunto de Datos 

 

Distribución Temporal: Periodo: 5 años (2020-

2025), frecuencia: Horaria  con un otal de 

registros: 5000. 

 

Patrones y Variaciones: patrones diarios: Mayor 

consumo en horas pico (tarde/noche), patrones 

estacionales: Variaciones en el consumo y 

generación según la estación, variaciones 

geográficas: Diferentes condiciones climáticas y 

topográficas y variaciones operativas: 

Diferentes estados de mantenimiento y edad de 

equipos. 

 

Calidad de los Datos 

 

Consistencia: No valores nulos, valores 

físicamente plausibles y voherencia entre 

variables relacionadas. 

 

 Rangos de Valores; temperatura: 18°C - 35°C, 

humedad: 60% - 95%, velocidad del viento: 0 - 

15 m/s, radiación solar: 0 - 350 W/m², edad de 

equipos: 1 - 30 años, puntaje de mantenimiento: 

0 – 1, eficiencia energética: 0 – 1 y satisfacción 

del cliente: 0 – 1. 

 

Relaciones entre Variables: la eficiencia 

energética estuvo influenciada por el consumo y 

la generación, el tiempo de respuesta estivo 

relacionado con la edad del equipo y el 

mantenimiento, la satisfacción del cliente 

dependió de las pérdidas, el tiempo de respuesta 

y el estado del sistema y la generación de energía 

considera fuentes renovables (solar y eólica) y 

no renovables (térmica). 

 

 Consideraciones Metodológicas 

 

Los datos fueron generados siguiendo patrones 

observados en redes eléctricas latinoamericanas, 

incluyendo: patrones de consumo típicos, 

variaciones climáticas regionales, características 

operativas de la red y factores geográficos 

relevantes. 

 

Estos datos proporcionaron una representación 

realista del funcionamiento de una red eléctrica 

inteligente en Latinoamérica, permitiendo el 

análisis y optimización de diferentes aspectos 

del sistema. 

 

3. Resultados  
 

Análisis de Eficiencia Energética 

 

Modelo de Regresión Lineal 

 

El modelo de regresión lineal para predecir la 

eficiencia energética mostró resultados 

altamente significativos con RMSE: 0.0347 y 

R²: 0.86. 

 

Estos valores indican que el modelo explica el 

86% de la variabilidad en la eficiencia energética 

y tiene un error de predicción relativamente 

bajo. Las variables más influyentes incluyen: 

consumo y generación de energía, condiciones 

meteorológicas y estado del equipo y 

mantenimiento. 

 

Análisis de Clasificación 
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Clasificación de Riesgo 

 

Los modelos de clasificación para identificar 

riesgos en la red mostraron resultados mixtos: 

Random Forest: Precisión de 85.87% y Gradient 

Boosting: Precisión de 85.13% ( Figura 1).  

 

 
Fig 1. Clasificación de riesgos de modelos 

usados. 

 

Los modelos identificaron correctamente la 

mayoría de los casos de riesgo bajo (clase 0), 

pero tuvieron dificultades con las clases 

minoritarias (clase 2).  Esto sugiere la necesidad 

de: balancear mejor el conjunto de datos, 

implementar técnicas para manejar clases 

desbalanceadas y considerar métricas 

adicionales como el F1-score para evaluar el 

rendimiento en clases minoritarias. 

 

Clasificación de Potencial de Optimización 

 

Los modelos para identificar oportunidades de 

optimización mostraron un rendimiento 

excelente: Random Forest: Precisión de 99.87% 

y Gradient Boosting: Precisión de 100% ( Figura 

2).  

 

 

Fig 2. Clasificación de potencial de 

optimización de modelos usados. 

 

Estos resultados indican que el sistema puede 

identificar con alta precisión las áreas que 

requieren optimización, lo que es crucial para la 

gestión preventiva de la red. 

 

Análisis de Clustering 

 

Segmentación de la Red 

 

El análisis de clustering K-Means identificó tres 

clusters principales con características distintas 

( Figura 3).  

 

 
Fig 3. Tiempo de respuesta de Clúster. 

 

Cluster 1 (Latitud -17.43) con tiempo de 

respuesta: 13.83 minutos, posición geográfica: 

Centro-sur y cena respuesta y mantenimiento. 

 

Cluster 2 (Latitud 4.90): tiempo de respuesta: 

13.60 minutos, posición geográfica: Norte, 

excelente respuesta y mantenimiento. 

 

Cluster 3 (Latitud -20.67): tiempo de respuesta: 

14.23 minutos, posición geográfica: Sur y mayor 

tiempo de respuesta, potencial de mejora. 

 

Análisis de Series Temporales 

 

Predicción de Demanda 

 

El modelo ARIMA identificó patrones 

temporales significativos: coeficientes AR 
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significativos para lags 1-5. buena capacidad de 

predicción de la demanda energética e 

identificación de estacionalidad y tendencias 

temporales. 

 

Modelo LSTM 

 

El modelo LSTM para predicción de consumo 

mostró: RMSE: 51.5277 kWh, capacidad para 

capturar patrones complejos en el consumo y  

Utilización efectiva de secuencias temporales. 

 

Análisis de Optimización 

 

Distribución de Energía 

 

La optimización lineal para la distribución de 

energía mostró: generación óptima: 110.86 kWh, 

balance efectivo entre fuentes (solar, eólica, 

térmica) y cumplimiento de la demanda 

energética. 

 

Potencial de Optimización Heurística, se 

identificaron oportunidades para implementar: 

algoritmos genéticos para planificación de 

expansión, optimización por Enjambre de 

Partículas para ajustes dinámicos. 

 

Las fortalezas del sistema fueron predicción 

Robusta por altos niveles de precisión en la 

predicción de eficiencia y demanda, 

clasificación Efectiva: Excelente identificación 

de oportunidades de optimización, segmentación 

Clara: clusters geográficos bien definidos con 

características distintivas y balance adecuado en 

la distribución de energía. 

 

A pesar los buenos resultados se requieren áreas 

de mejora como mejorar la detección de riesgos 

minoritarios, implementar modelos más 

robustos para predicción de fallas, desarrollar 

modelos más avanzados para ajustes en tiempo 

real e incorporar más fuentes de datos externas.  

 

 Por lo que se recomienda implementar el 

sistema de clasificación de optimización para 

mantenimiento preventivo, desarrollar 

estrategias específicas para cada clúster 

geográfico, mejorar la monitorización de las 

áreas con mayor tiempo de respuesta, mantener 

la actualización continua de los modelos 

predictivos, mejora de la eficiencia, reducción 

de pérdidas energéticas, optimización del 

mantenimiento preventivo, mejor distribución 

de recursos. 

 

Así mismo se debe mejoras de la resiliencia, 

mediante identificación temprana de riesgos, 

mejor respuesta a incidentes, optimización de 

recursos en áreas críticas, mejora de la 

satisfacción del cliente, 

reducción de tiempos de respuesta, mejor 

gestión de la demanda y optimización del 

servicio. 

 

4. Discusión  
 

Los resultados de la investigación revelan un 

panorama prometedor para la integración de la 

inteligencia artificial (IA) en la gestión de redes 

energéticas, destacando su potencial para 

mejorar significativamente la eficiencia, la 

resiliencia y la satisfacción del cliente. Estos 

hallazgos se alinean con la creciente literatura 

que subraya el papel transformador de la IA en 

los sistemas energéticos [41]. 

 

En el análisis de eficiencia energética, el modelo 

de regresión lineal demostró una capacidad 

robusta para predecir la eficiencia, explicando el 

86% de su variabilidad con un error de 

predicción bajo (RMSE: 0.0347). Variables 

como el consumo y la generación de energía, las 

condiciones meteorológicas y el estado del 

equipo fueron identificadas como las más 

influyentes. Esto concuerda con la visión de las 

redes inteligentes impulsadas por IA, que 

pueden optimizar la gestión energética en 

diversos sectores, incluyendo la manufactura 

[42]. 
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Los modelos de clasificación de riesgo 

exhibieron una precisión del 85.87% para 

Random Forest y del 85.13% para Gradient 

Boosting. Si bien estos modelos fueron efectivos 

en la identificación de riesgos de clase 

mayoritaria (riesgo bajo, clase 0), mostraron 

limitaciones con las clases minoritarias (clase 2). 

Esta dificultad resalta la necesidad de abordar el 

desequilibrio de clases en los conjuntos de datos 

y considerar métricas adicionales como el F1-

score para una evaluación más completa del 

rendimiento, un desafío recurrente en la 

aplicación de machine learning a sistemas 

energéticos [43]. 

Por otro lado, los modelos de clasificación para 

el potencial de optimización demostraron un 

rendimiento excepcional, alcanzando 

precisiones del 99.87% (Random Forest) y 

100% (Gradient Boosting). Estos resultados son 

cruciales para la gestión preventiva de la red, 

permitiendo la identificación de áreas que 

requieren optimización con una alta fiabilidad 

[44], [45].  

 

El análisis de clustering K-Means reveló una 

segmentación clara de la red en tres grupos 

geográficos distintos: un clúster centro-sur 

(Latitud −17.43) con un tiempo de respuesta de 

13.83 minutos y buena respuesta y 

mantenimiento; un clúster norte (Latitud 4.90) 

con un tiempo de respuesta de 13.60 minutos y 

excelente respuesta y mantenimiento; y un 

clúster sur (Latitud −20.67) con el mayor tiempo 

de respuesta de 14.23 minutos y potencial de 

mejora. Esta segmentación es fundamental para 

el desarrollo de estrategias de mantenimiento 

preventivo y optimización adaptadas a las 

características específicas de cada región [46]. 

 

En cuanto al análisis de series temporales, el 

modelo ARIMA demostró una buena capacidad 

para predecir la demanda energética, 

identificando patrones de estacionalidad y 

tendencias temporales significativas. El modelo 

LSTM, por su parte, mostró una capacidad 

superior para capturar patrones complejos en el 

consumo con un RMSE de 51.5277 kWh, lo que 

refuerza su utilidad para la predicción de 

consumo energético [47]. 

 

Finalmente, el análisis de optimización lineal 

para la distribución de energía indicó una 

generación óptima de 110.86 kWh, logrando un 

balance efectivo entre diversas fuentes (solar, 

eólica, térmica) y el cumplimiento de la 

demanda energética. Se identificaron también 

oportunidades para la implementación de 

algoritmos heurísticos como los algoritmos 

genéticos y la optimización por enjambre de 

partículas para la planificación de expansión y 

ajustes dinámicos, respectivamente. Esto es 

consistente con las tendencias actuales que 

exploran la IA para la optimización de la red 

eléctrica [48]. 

 

5. Conclusiones 
 

Los resultados obtenidos demuestran de manera 

contundente el gran potencial de la inteligencia 

artificial (IA) para revolucionar la gestión de 

redes energéticas, permitiendo una operación 

más eficiente, resiliente y orientada al cliente. La 

precisión y robustez de los modelos predictivos 

para la eficiencia energética y la demanda, junto 

con la excelente capacidad de clasificación para 

identificar oportunidades de optimización, son 

fortalezas innegables del sistema. Además, la 

segmentación geográfica de la red a través del 

análisis de clustering K-Means ofrece una base 

sólida para estrategias de gestión diferenciadas. 

 

Si bien se observa una necesidad clara de 

mejorar la detección de riesgos minoritarios y de 

desarrollar modelos más avanzados para la 

predicción de fallas y la optimización dinámica 

en tiempo real, estos desafíos no opacan los 

logros significativos. Las oportunidades de 

optimización identificadas, la capacidad de 

balancear eficazmente las fuentes de energía y la 

mejora en los tiempos de respuesta son 

indicativos de un sistema con la capacidad de 

transformar positivamente la operación de la red. 

https://doi.org/10.70577/213ara83


 

 
REVISTA CIENTIFICA INNOVACIÓN INTEGRAL 
ISSN:  3103-1420 
DOI: https://doi.org/10.70577/213ara83 

 

 

 

 

En definitiva, la implementación de este sistema 

basado en IA representa un paso fundamental 

hacia la creación de redes inteligentes (smart 

grids) verdaderamente adaptativas y proactivas, 

capaces de anticipar y responder eficientemente 

a las complejidades del panorama energético 

actual y futuro. La inversión en las áreas de 

mejora identificadas, junto con la adopción de 

las recomendaciones de implementación, será 

crucial para maximizar el impacto de esta 

tecnología innovadora en la eficiencia, la 

resiliencia y la satisfacción del cliente. 
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