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Abstract.- This study analyzes the predictive effectiveness of time series models applied to infectious disease
outbreaks in Latin America, using a data science approach. Two approaches were compared: the seasonal SARIMA
model and a hybrid SARIMA + NNAAR (Autoregressive Neural Network) model. The results show that, although
SARIMA presents limited explanatory power (negative R?), it maintains acceptable performance in terms of error
(RMSE=1.55; MAE=0.87). In contrast, the hybrid model showed inferior performance, with higher errors and an
even more negative R?, indicating that the incorporation of a neural network does not necessarily improve the system's
predictive capacity. The learning curve of the NNAAR model suggests possible undertraining, reinforcing the need
for careful calibration when integrating complex models. The study highlights the importance of selecting models
based on data structure, beyond technical sophistication, and recommends methodological optimizations before
implementing hybrid models in epidemiological surveillance systems. This analysis, based on realistic simulated
data, underscores the value of time series methodologies for disease prediction and public health decision-making.
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Resumen.- Este estudio analiza la eficacia predictiva de modelos de series temporales aplicados a brotes de
enfermedades infecciosas en América Latina, empleando un enfoque de ciencia de datos. Se compararon dos
enfoques: el modelo estacional SARIMA y un modelo hibrido SARIMA + NNAAR (Red Neuronal Autorregresiva).
Los resultados muestran que, aunque SARIMA presenta una limitada capacidad explicativa (R? negativo), mantiene
un desempefio aceptable en términos de error (RMSE=1.55; MAE=0.87). Por el contrario, el modelo hibrido mostré
un rendimiento inferior, con errores mas altos y un R? ain mas negativo, lo que indica que la incorporacion de una
red neuronal no mejora necesariamente la capacidad predictiva del sistema. La curva de aprendizaje del modelo
NNAAR sugiere un posible subentrenamiento, reforzando la necesidad de una cuidadosa calibracion cuando se
integran modelos complejos. El estudio destaca la importancia de seleccionar modelos seglin la estructura de los
datos, mas alla de la sofisticacion técnica, y recomienda optimizaciones metodologicas antes de implementar modelos
hibridos en sistemas de vigilancia epidemioldgica. Este analisis, basado en datos simulados realistas, subraya el valor
de las metodologias de series temporales para la prediccion de enfermedades y la toma de decisiones en salud publica.
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1. Introduccion

Time series models for predicting infectious dis-
ease outbreaks in Latin America represent a critical
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area of study that integrates data science tech-
niques with epidemiological practices to enhance
public health responses to infectious disease
threats. As the region grapples with numerous pub-
lic health challenges, including outbreaks of dis-
eases such as COVID-19, dengue, and influenza,
the application of time series models has become a
vital tool for forecasting disease dynamics and
guiding effective interventions [1].

These models use historical data to identify pat-
terns and predict future outbreaks, supporting
health officials in their decision-making processes
and resource allocation. The importance of using
time series models lies in their ability to deliver
real-time insights that are essential to mitigate the
impact of infectious diseases [2].

Traditional public health surveillance methods of-
ten face delays and inaccuracies, necessitating a
shift toward more advanced analytical techniques
that can leverage diverse data sources, including
social media and online health reports.

In particular, models such as the Autoregressive
Integrated Moving Average (ARIMA) and its var-
iants have gained prominence for their robustness
in capturing the intricate temporal dependencies
characteristic of infectious disease data, enabling
both short- and long-term forecasting. Despite ad-
vances in modeling techniques, several challenges
persist, including issues related to data quality, eth-
ical concerns surrounding privacy, and the integra-
tion of heterogeneous data sources [3].

Critics have pointed out that the non-stationary na-
ture of some infectious disease data complicates
accurate modeling, while issues concerning data
accuracy and model specification continue to pose
barriers to effective prediction [4].

Additionally, the evolving landscape of diseases
and their transmission dynamics underscores the
importance of ongoing collaboration among re-

searchers, public health officials, and data scien-
tists to refine these models and ensure their ap-
plicability in real-world scenarios [5].

Therefore, the application of time series models to
predict infectious disease outbreaks in Latin Amer-
ica represents a significant intersection of data sci-
ence and public health, with the potential to trans-
form epidemic forecasting and response strategies
[6]. As the field advances, addressing existing lim-
itations and enhancing the methodological rigor of
these models will be crucial to protecting commu-
nities and improving public health outcomes in the
face of emerging infectious disease threats.

In recent years, the global public health landscape
has been significantly shaped by the emergence of
infectious diseases and the threat of bioterrorism.
The COVID-19 pandemic, along with outbreaks of
diseases such as SARS and influenza, has high-
lighted the critical importance of robust public
health surveillance systems for national security
and community well-being [7].

These systems now increasingly rely on real-time
data from various sources, including clinical envi-
ronments and telehealth centers, enabling public
health agencies to respond more effectively to po-
tential outbreaks [8].

Infectious diseases emerge when pathogens infect
individuals, leading to adverse health outcomes
and posing risks to society. Early detection and
monitoring of these outbreaks are essential to re-
duce mortality rates and control the spread of dis-
ease. To this end, many countries have developed
comprehensive infectious disease surveillance
mechanisms. These systems involve collaboration
among clinical healthcare providers, local and state
health agencies, federal institutions, academic
groups, and various governmental entities [9].

Moreover, modern technologies such as social me-
dia and search engines are being used as innovative
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tools to track disease trends, complementing tradi-
tional data sources such as hospital records and la-
boratory results [9].

Historically, disease outbreak detection has been
hindered by challenges related to the timeliness
and specificity of conventional data sources, which
can suffer from bureaucratic delays and high re-
source demands [9].

As a result, public health officials are increasingly
turning to machine learning and data science tech-
niques to improve real-time predictions of disease
outbreaks. For example, recent studies have
demonstrated the effectiveness of various machine
learning models, such as Support Vector Machines
(SVM) and Deep Neural Networks (DNN), in lev-
eraging media reports to detect early signs of in-
fectious disease outbreaks, achieving remarkable
levels of accuracy [9], [10].

The complexities of infectious disease epidemiol-
ogy further complicate outbreak detection efforts.
Epidemiological factors—including mode of
transmission, latency periods, and the presence of
asymptomatic carriers—must be carefully ana-
lyzed to understand disease dynamics within pop-
ulations. In addition, variability in public health re-
sponse and healthcare infrastructure across differ-
ent regions requires tailored approaches to disease
surveillance and intervention strategies[11].

As the field of epidemiology continues to evolve,
there remains a constant need for collaboration be-
tween researchers, public health officials, and data
scientists to improve outbreak prediction models
and integrate them into practical public health de-
cision-making processes [12].

This interdisciplinary approach aims to ensure that
data-driven insights lead to timely and effective in-
terventions that can protect communities from the
adverse impacts of infectious diseases [9].

Time Series Models

Time series models play a fundamental role in the
prediction and analysis of infectious disease out-
breaks. These models leverage historical data to
forecast future trends, providing insights essential
for public health planning and response strategies.
Among various methodologies, the Autoregressive
Integrated Moving Average (ARIMA) model is
particularly prominent, as it captures the unique
dependencies found in time series data, enabling
effective short- and long-term epidemic trend fore-
casting [13].

Types of Time Series Models
ARIMA and its Variants

The ARIMA model is a foundational statistical
technique that combines autoregression (AR), dif-
ferencing (I), and moving averages (MA) to model
non-stationary time series data. Its parameters are
determined using the Box-Jenkins methodology,
which involves identifying appropriate model
structures through graphical analysis and autocor-
relation functions [14]. Variants such as Seasonal
ARIMA (SARIMA) are used when data exhibit
seasonal characteristics, adding parameters to ac-
count for seasonal effects [15].

Advanced Time Series Techniques

Recent developments in computational techniques
have expanded the toolbox available to epidemiol-
ogists. Advanced models such as Exponential
Smoothing State Space Models (ETS), Seasonal
and Trend decomposition using Loess (STLM),
and TBATS (Trigonometric, Box-Cox, ARMA,
Trend, Seasonal) are gaining traction for their abil-
ity to capture complex seasonal patterns [16], [17].

Machine learning approaches, including deep
learning models such as Long Short-Term Memory
(LSTM) networks, have also been applied to im-
prove prediction accuracy, particularly when tradi-
tional statistical methods face limitations due to
data scarcity [18].
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Applications in Infectious Disease Forecasting

Time series modeling has been successfully ap-
plied to a variety of infectious diseases, including
COVID-19, dengue, and influenza. Studies have
demonstrated the utility of different models in
forecasting disease dynamics, with specific em-
phasis on logistic and Gompertz models used for
COVID-19 predictions [19]. The use of such mod-
els facilitates understanding of transmission dy-
namics and assists in formulating effective inter-
vention strategies.

Challenges and Considerations

While time series models provide valuable in-
sights, they also present challenges. The non-sta-
tionary nature of some infectious disease data can
complicate analysis, as conventional regression co-
efficients may fail to produce the best linear unbi-
ased estimators (BLUE) under such conditions.
Additionally, identifying appropriate models re-
quires substantial statistical expertise, which may
be a barrier for some professionals in the field [20].

Application of Time Series Models in Infectious
Disease Prediction

Time series models play a crucial role in predicting
infectious disease outbreaks, enabling epidemiolo-
gists to understand the temporal dynamics of dis-
ease spread and inform public health interventions.
A comparative analysis of statistical and compart-
mental methods for modeling infectious disease
progression highlights the effectiveness of time se-
ries approaches in outbreak forecasting, particu-
larly in the context of the ongoing COVID-19 pan-
demic [2].

Modeling and Forecasting COVID-19

Epidemiologists have employed various time se-
ries modeling techniques to analyze COVID-19
transmission mechanisms, aiming to improve epi-
demic forecasting and control measures. For exam-
ple, Li et al. discussed the importance of modeling

COVID-19 to enhance preparedness and monitor-
ing strategies [21].

Furthermore, the work of Cori & Kucharski [22]
on the dynamics of primary transmission through
mathematical modeling underscores the im-
portance of time series regression for understand-
ing disease behavior over time.

Techniques and Methodologies

Different statistical modeling and forecasting tech-
niques have been illustrated in the context of vari-
ous infectious diseases, including COVID-19.
These techniques encompass distribution fitting,
time series modeling, and epidemiological model-
ing, which are essential for accurately predicting
disease spread. When sufficient epidemiological
data are available, models can be fitted to normal
or other theoretical distributions to select the best
fit for predicting infection rates [23].

Data Preparation and Imputation

Building effective time series models requires rig-
orous data preparation. Preprocessing of datasets
includes harmonizing raw data with varying spatial
and temporal resolutions, addressing missing val-
ues through techniques such as spline interpolation
and forward fill, and ensuring that relevant features
are retained for modeling [24].

These preprocessing steps enhance the input data
quality for algorithms like MiniRocket, which lev-
erages random convolutional kernels for time se-
ries classification, thereby improving predictive
accuracy [10].

Challenges and Future Directions

Despite advances in time series modeling, chal-
lenges remain, particularly regarding data collec-
tion and the need for robust computational re-
sources. The integration of internet-based data
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sources such as social media and online news arti-
cles can complement traditional datasets and en-
hance the timeliness and accuracy of forecasts
[25].

As the COVID-19 virus mutates, employing these
diverse data sources may become increasingly crit-
ical to identify new variants and effectively inform
public health responses. Therefore, ongoing in-
vestments in data-sharing initiatives and computa-
tional infrastructure are essential to fully harness
the potential of time series models in forecasting
infectious diseases in Latin America and beyond
[26].

Challenges and Limitations
Data Quality and Relevance

One of the key challenges in developing predictive
models for infectious disease outbreaks is ensuring
high data quality and accuracy. The effectiveness
of internet-based surveillance systems is deeply af-
fected by the quality of data and analyses used
[27].

Improvements in data accuracy can be achieved by
exploring methods to determine a user's geo-
graphic location based on profile information and
language usage in text. Additionally, addressing
sample size limitations is critical, as existing algo-
rithms often rely on rudimentary methods that are
inadequate for real-time pandemic data extraction
and analysis [28].

Model Specification and Algorithmic Limita-
tions

Thoughtful model specification is another major
challenge, requiring a rigorous approach to address
various critiques of existing methods. As data vol-
ume grows exponentially due to increased social
media use, there is an urgent need for sophisticated
algorithms capable of accurately detecting and
tracking infectious disease indicators [29].

Traditional surveillance systems often rely on con-
ventional data sources, such as the World Health
Organization (WHO) and local health agencies.
However, these sources may be less timely and
sensitive due to bureaucratic delays and high data
validation costs [30].

Ethical Considerations and Privacy

Emerging challenges also include ethical concerns
surrounding the use of spatial data, particularly re-
garding individuals’ locations and movements.
Balancing public health interests with individual
privacy remains a critical aspect of spatial surveil-
lance, requiring the development of guidelines that
respect personal privacy while providing necessary
health insights [31].

Multiplatform Data Integration

Another limitation is the complexity of integrating
multiplatform data. While using social media and
other internet-based platforms to monitor disease
trends has proven effective, integrating data from
these varied sources poses significant challenges.
Ensuring consistency and accuracy across plat-
forms is vital to creating reliable predictive models
[32].

Ongoing Refinement of Techniques

Continuous refinement of algorithmic accuracy is
paramount as the field of infectious disease predic-
tion rapidly evolves. Advances in technology cre-
ate new opportunities to leverage novel data
sources and employ advanced analytical tech-
niques. However, these advances also demand con-
stant adaptation of existing methodologies to main-
tain their effectiveness in outbreak detection and
forecasting. Thus, the objective of this study was
to evaluate the use of time series models to forecast
infectious disease outbreaks in Latin America.

2. Materials and Methods

2.1 Statistical Models
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Statistical methods and predictive models were
used in the analysis of epidemiological outbreak
prediction:

SARIMA Model (Seasonal Autoregressive Inte-
grated Moving Average): Autoregressive Compo-
nent (AR): Captures linear dependence between
observations at  different time  points.
Differencing Component (I): Removes trends and
seasonality through differencing.
Moving Average Component (MA): Models the
model error as a linear combination of past errors.
Seasonal Component: Incorporates annual cyclic
patterns into the epidemiological data.

Neural  Network  Autoregressive  Model
(NNAAR)LSTM Architecture (Long Short-Term
Memory): A recurrent neural network designed to
handle time series with long-term dependencies.

Network Structure

LSTM layer with 32 units (input layer), LSTM
layer with 16 units (middle layer), dense layer with
8 units (hidden layer), output layer with one unit
activation function: Hyperbolic tangent (tanh) in
LSTM layers and ReLU in middle layer, optimizer:
Adam with reduced learning rate (0.0005) and loss
function: Mean Square Error (MSE).

Hybrid Model SARIMA + NNAAR

A two-stage approach that combines the strengths
of both models:
SARIMA captures linear and seasonal patterns,
while NNAAR models non-linear patterns and
long-term dependencies. The final prediction is ob-
tained by summing the SARIMA forecasts and the
corrections from the NNAAR.

Evaluation Metrics

Root Mean Square Error (RMSE): Measures the
magnitude of the prediction errors, Mean Absolute
Error (MAE): Measures the average magnitude of
the errors, Mean Absolute Percentage Error

(MAPE): Measures the relative error of the predic-
tions and Coefficient of Determination (R?):
Measures the proportion of variance explained by
the model.

Validation Process

Data split: 80% for training and 20% for testing,
implicit cross-validation using the test set, and re-
sidual analysis to verify model assumptions.

Preprocessing Techniques

Handling time sequences: Preparing input se-
quences with a 7-day lookback and incorporating
residuals: Using SARIMA residuals as additional
features for NNAAR.

This methodological approach combines tradi-
tional statistical techniques with deep learning,
providing a robust framework for predicting epide-
miological outbreaks by capturing both linear and
non-linear patterns in the data.

2.2 Data Used

The database used in this analysis is a synthetic
simulation designed to model realistic epidemio-
logical patterns. The database consists of 1,000
daily records, covering approximately 27 years of
data (from January 1, 1998, to December 31,
2024), with a daily sampling frequency.

Database Structure: Disease Incidence (Target
Variable): Daily incidence rate per 100,000 popu-
lation, simulated values between 0.5 and 2 cases
per 100,000 population, including seasonal pat-
terns and random outbreak events.

Predictor Variables (Characteristics): Mobile (Mo-
bility): Population mobility index (0.05-0.15),
Temperature: Ambient temperature in degrees Cel-
stus (20-30°C), Humidity: Percentage of relative
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humidity (30-90%), and Precipitation: Daily pre-
cipitation amount in millimeters (0-200mm).

Simulation Characteristics: Seasonal pattern: An-
nual seasonal component with periodic variations;
Outbreak events: Inclusion of random outbreaks
with a 5% probability; Random noise (intrinsic
variability in measurements); and Temporal corre-
lation (autocorrelation structure in the data).

The database was designed to reflect realistic epi-
demiological patterns, including: seasonal varia-
tions in disease incidence, impact of environmental
factors (climate and mobility), random outbreak
events, and a consistent temporal structure.

The simulation was generated using a fixed ran-
dom seed (42) to ensure reproducibility of the re-
sults. The data were divided into sets. training
(80%) and testing (20%) for predictive model val-
idation.

This synthetic database provided a controlled envi-
ronment for evaluating and optimizing epidemio-
logical outbreak prediction models, allowing for
rigorous analysis of the predictive capabilities of
different analytical approaches.

3. Results

The evaluation of the SARIMA model reveals
moderate performance in predicting incidence
rates. The Root Mean Squared Error (RMSE) ob-
tained was 1.5515, indicating an acceptable level
of accuracy, while the Mean Absolute Error
(MAE) remained at 0.8690, suggesting that the av-
erage deviations in the predictions were less than
one case per 100,000 inhabitants.

The Mean Absolute Percentage Error (MAPE) was
1.0907%, confirming a moderate relative accuracy.
However, the coefficient of determination (R?) was
-0.0054, indicating that the model virtually fails to
explain the variability in the data, which limits its
explanatory usefulness. On the other hand, the
evaluation of the hybrid model combining

SARIMA with a nonlinear autoregressive neural
network (NNAAR) showed poorer performance
than the standalone SARIMA model (Figure 1).

Residual Analysis

SARIMA Residuals |

200008 200005 200006 200007 200008 200009 200010

— Fiybnd Residuals

Fig 1. Comparison of the hybrid SARIMA model
combined with a nonlinear autoregressive neural
network (NNAAR) versus the standalone
SARIMA model.

The RMSE increased to 2.3422 and the MAE
reached 2.1979, indicating more pronounced pre-
diction errors. Similarly, the MAPE rose to
2.5792%, signaling a significant loss in relative ac-
curacy. The R? value was even more negative (-
1.2912), suggesting that integrating both models
not only fails to improve prediction but actually
worsens explanatory power.

In the analysis of residuals and predictive perfor-
mance, it is observed that the SARIMA model
(Figure 2), despite its simplicity, maintains stable
behavior over time, with consistently contained er-
rors. In contrast, the hybrid model fails to capital-
ize on the SARIMA residuals or effectively incor-
porate nonlinear patterns through the neural net-
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work, resulting in an overall decline in perfor-
mance.

Disease Outbreak Prediction

SARIMA Prediction

Fig 2. Predictive Performance of the SARIMA
Model.

Regarding the training metrics, the loss observed
in the NNAAR model shows a progressive de-
crease during the initial epochs (Figure 3), indicat-
ing that the model is learning, albeit slowly. The
learning curve suggests that the model may be un-
dertrained, which limits its ability to generalize and
predict effectively.

Prediccién de Brotes de Enfermedades

— feal
Prediccion SARIMA
~— Prediccion Hibrida

200004 200005 200006 200007 200008 200009 200010

Fig 3. Training metrics of the NNAAR model.

4. Discussion

The evaluation of the SARIMA model applied to
epidemiological time series indicates a moderate
performance in predicting incidence rates [15].
Although error metrics such as RMSE (1.5515)
and MAE (0.8690) suggest that the model main-
tains contained deviations over time, the negative
coefficient of determination (R? =-0.0054) denotes

a limited explanatory capacity regarding the ob-
served variability.

This finding aligns with observations by authors
who warn that while SARIMA models are useful
for capturing seasonality and linear patterns, their
performance can be limited when data present un-
derlying structural complexities or non-linearities
[33], [34].

In comparison, the hybrid model combining
SARIMA with nonlinear autoregressive neural
networks (NNAAR) showed inferior performance,
evidenced by a significant increase in errors
(RMSE = 2.3422; MAE = 2.1979; MAPE =
2.5792%) and an even more negative R? (-1.2912).
Although hybrid architectures have been shown to
improve predictions by incorporating nonlinear
patterns, in this case, the integration with the neural
network not only failed to contribute positively but
worsened the overall model performance. This
could be explained, as some authors suggest, by
poor hyperparameter tuning or underutilization of
SARIMA residuals, which did not provide relevant
additional information [35], [36].

The analysis of the training curves for the NNAAR
component showed a progressive decrease in the
loss function, but at a slow pace, suggesting possi-
ble undertraining of the model. Neural models ap-
plied to epidemiological prediction require fine-
tuning and sufficient training epochs to capture
complex dynamics [37].

In this regard, the architecture used might not have
been optimal for the type of time series analyzed,
or the nonlinear patterns present in the data were
not significant, as observed in similar studies on
emerging diseases with more stationary structures
[38].

Additionally, it has been reported that the predict-
ability of infectious outbreaks depends not only on
the model used but also on data quality, granular-
ity, and the intrinsic behavior of the pathogen. The
hybrid model’s failure to outperform the SARIMA
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model may also indicate that the data lacked suffi-
cient nonlinear signals to justify the added com-
plexity of the neural model [39], [40].

Together, these results reinforce the need for care-
ful model and hybrid structure selection when ad-
dressing epidemiological phenomena. A robust
prediction strategy requires the optimal integration
of traditional statistical models with artificial intel-
ligence approaches, always accompanied by a crit-
ical evaluation of the added value of each compo-
nent [41].

5. Conclusions

The results obtained in this comparative evaluation
reveal that while the SARIMA model shows limi-
tations in its explanatory capacity, evidenced by a
negative coefficient of determination, it maintains
acceptable performance in terms of predictive ac-
curacy. The relatively low error metrics suggest
that this approach, based on linear and seasonal
components, adequately captures the general dy-
namics of the epidemiological incidence time se-
ries.

In contrast, the incorporation of an autoregressive
neural network (NNAAR) in a hybrid model did
not lead to significant improvements but rather to
a deterioration in performance. This finding sug-
gests that combining statistical models with deep
learning techniques does not automatically guaran-
tee better predictive capacity, especially when the
residuals of the base model do not contain exploit-
able nonlinear patterns or when the neural architec-
ture is not properly tuned. Furthermore, the slow
convergence observed in training the NNAAR
points to possible undertraining and underutiliza-
tion of its potential.

Overall, these results highlight that model selec-
tion for epidemiological outbreak prediction
should be guided not only by the sophistication of
the technique but by its suitability to the data struc-
ture. The SARIMA model, despite its simplicity,

demonstrated greater stability and predictive effi-
ciency than its hybrid counterpart. Therefore, a rig-
orous evaluation of the added value of hybrid tech-
niques is recommended, as well as more exhaus-
tive parameter optimization before their imple-
mentation in epidemiological surveillance sys-
tems.
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