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Abstract.- This study analyzes the predictive effectiveness of time series models applied to infectious disease 

outbreaks in Latin America, using a data science approach. Two approaches were compared: the seasonal SARIMA 

model and a hybrid SARIMA + NNAAR (Autoregressive Neural Network) model. The results show that, although 

SARIMA presents limited explanatory power (negative R²), it maintains acceptable performance in terms of error 

(RMSE=1.55; MAE=0.87). In contrast, the hybrid model showed inferior performance, with higher errors and an 

even more negative R², indicating that the incorporation of a neural network does not necessarily improve the system's 

predictive capacity. The learning curve of the NNAAR model suggests possible undertraining, reinforcing the need 

for careful calibration when integrating complex models. The study highlights the importance of selecting models 

based on data structure, beyond technical sophistication, and recommends methodological optimizations before 

implementing hybrid models in epidemiological surveillance systems. This analysis, based on realistic simulated 

data, underscores the value of time series methodologies for disease prediction and public health decision-making. 
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Resumen.- Este estudio analiza la eficacia predictiva de modelos de series temporales aplicados a brotes de 

enfermedades infecciosas en América Latina, empleando un enfoque de ciencia de datos. Se compararon dos 

enfoques: el modelo estacional SARIMA y un modelo híbrido SARIMA + NNAAR (Red Neuronal Autorregresiva). 

Los resultados muestran que, aunque SARIMA presenta una limitada capacidad explicativa (R² negativo), mantiene 

un desempeño aceptable en términos de error (RMSE=1.55; MAE=0.87). Por el contrario, el modelo híbrido mostró 

un rendimiento inferior, con errores más altos y un R² aún más negativo, lo que indica que la incorporación de una 

red neuronal no mejora necesariamente la capacidad predictiva del sistema. La curva de aprendizaje del modelo 

NNAAR sugiere un posible subentrenamiento, reforzando la necesidad de una cuidadosa calibración cuando se 

integran modelos complejos. El estudio destaca la importancia de seleccionar modelos según la estructura de los 

datos, más allá de la sofisticación técnica, y recomienda optimizaciones metodológicas antes de implementar modelos 

híbridos en sistemas de vigilancia epidemiológica. Este análisis, basado en datos simulados realistas, subraya el valor 

de las metodologías de series temporales para la predicción de enfermedades y la toma de decisiones en salud pública. 
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1. Introducción 

 
Los modelos de series de tiempo para predecir 

brotes de enfermedades infecciosas en América 

Latina es un área crítica de estudio que integra 

técnicas de ciencia de datos con prácticas 

epidemiológicas para mejorar las respuestas de 

salud pública a las amenazas de enfermedades 

infecciosas. A medida que la región lidia con 

numerosos desafíos de salud pública, incluidos 

brotes de enfermedades como Covid-19, dengue e 

influenza, la aplicación de modelos de series 

temporales se ha convertido en una herramienta 

vital para pronosticar la dinámica de las 

enfermedades y guiar intervenciones efectivas                  

[1].  

 

Estos modelos utilizan datos históricos para 

identificar patrones y predecir brotes futuros, lo 

que ayuda a los funcionarios de salud en sus 

procesos de toma de decisiones y su asignación de 

recursos. La importancia de emplear modelos de 

series de tiempo radica en su capacidad para 

ofrecer información en tiempo real que sean 

esenciales para mitigar el impacto de las 

enfermedades infecciosas [2].  

 

Los métodos tradicionales de vigilancia de salud 

pública a menudo enfrentan retrasos e 

inexactitudes, lo que requiere un cambio hacia un 

análisis más avanzado Técnicas que pueden 

aprovechar diversas fuentes de datos, incluidas las 

redes sociales e informes de salud en línea.  

 

En particular, los modelos como el promedio móvil 

integrado autorregresivo (ARIMA) y sus variantes 

han ganado prominencia por su robustez en la 

captura de las intrincadas dependencias temporales 

características de los datos de enfermedades 

infecciosas, lo que permite pronósticos a corto y 

largo plazo. A pesar de los avances en las técnicas 

de modelado, persisten varios desafíos, incluidas 

las complejidades de la calidad de los datos, las 

consideraciones éticas con respecto a la privacidad 

y la integración de fuentes de datos heterogéneas 

[3].  

 

Los críticos destacan que la naturaleza no 

estacionaria de algunos datos de enfermedades 

infecciosas complica el modelado preciso, 

mientras que los problemas relacionados con la 

precisión de los datos y la especificación del 

modelo continúan planteando barreras para una 

predicción efectiva [4].  

 

Además, el panorama en evolución de las 

enfermedades y su dinámica de transmisión 

subraya la importancia de la colaboración en curso 

entre los investigadores, los funcionarios de salud 

pública, y científicos de datos para refinar estos 

modelos y garantizar su aplicabilidad en escenarios 

del mundo real [5].  

 

Es por ello, que la aplicación de modelos de series 

temporales para predecir los brotes de 

enfermedades infecciosas en América Latina 

representa una intersección significativa de la 

ciencia de datos y la salud pública, con el potencial 

de transformar las estrategias de pronósticos y 

respuesta epidémicos [6]. A medida que avanza el 

campo, abordar las limitaciones existentes y 

mejorar el rigor metodológico de estos modelos 

será crucial para proteger a las comunidades y 

mejorar los resultados de salud pública frente a las 

amenazas emergentes de enfermedades 

infecciosas. 

 

 En los últimos años, el panorama global de la 

salud pública se ha configurado significativamente 

por la aparición de enfermedades infecciosas y la 

amenaza del bioterrorismo. La pandemia Covid-

19, junto con brotes de enfermedades como el SAR 

e influenza, ha destacado la importancia crítica de 

los robustos sistemas de vigilancia de salud pública 

para la seguridad nacional y el bienestar de la 

comunidad [7].  

 

Estos sistemas ahora dependen cada vez más de 

datos en tiempo real de diversas fuentes, incluidos 

entornos clínicos y centros de telesalud, lo que 

permite a las agencias de salud pública responder 

de manera más efectiva a los posibles brotes [8].  
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Las enfermedades infecciosas surgen cuando los 

patógenos infectan a las personas, lo que lleva a 

efectos adversos sobre la salud y la planeación de 

riesgos para la sociedad. La detección y el 

monitoreo temprano de estos brotes son esenciales 

para mitigar las tasas de mortalidad y controlar la 

propagación de la enfermedad. Con este fin, 

muchos países han desarrollado mecanismos 

integrales de vigilancia de enfermedades 

infecciosas. Estos sistemas implican la 

colaboración entre los proveedores de atención 

médica clínica, las agencias de salud locales y 

estatales, las instituciones federales, los grupos 

académicos y varias entidades gubernamentales 

[9]. 

 

Además, la tecnología moderna, como las redes 

sociales y los motores de búsqueda, se está 

utilizando como herramientas innovadoras para 

rastrear las tendencias de las enfermedades, 

complementando las fuentes de datos tradicionales 

como los registros hospitalarios y el laboratorio. 

Resultados [9]. 

 

Históricamente, la detección de brotes de 

enfermedades se ha visto obstaculizada por 

desafíos relacionados con la puntualidad y 

especificidad de las fuentes de datos 

convencionales, que pueden sufrir retrasos 

burocráticos y altas demandas de recursos [9].  

 

Como resultado, los funcionarios de salud pública 

están recurriendo cada vez más a las técnicas de 

aprendizaje automático y ciencia de datos para 

mejorar las predicciones en tiempo real de los 

brotes de enfermedades. Por ejemplo, estudios 

recientes han demostrado la eficacia de varios 

modelos de aprendizaje automático, como la 

máquina de vectores de soporte (SVM) y las redes 

neuronales profundas (DNN), en la utilización de 

informes de medios para detectar los primeros 

signos de brotes de enfermedades infecciosas, 

logrando niveles de precisión notables  [9], [10].  

 

Las complejidades de la epidemiología de 

enfermedades infecciosas complican aún más los 

esfuerzos de detección de brotes. Los factores 

epidemiológicos, incluido el modo de transmisión, 

los períodos latentes y la presencia de portadores 

asintomáticos, deben analizarse cuidadosamente 

para comprender la dinámica de la enfermedad 

entre poblaciones. Además, la variabilidad en la 

respuesta de salud pública y la infraestructura de 

atención médica en diferentes regiones requiere 

enfoques personalizados para la vigilancia de la 

enfermedad y las estrategias de intervención [11].  

 

A medida que el campo de la epidemiología 

continúa evolucionando, existe una necesidad 

continua de colaboración entre investigadores, 

funcionarios de salud pública y científicos de datos 

para mejorar los modelos de predicción de brotes e 

integrarlos en procesos prácticos de toma de 

decisiones de salud pública [12].  

 

Este enfoque interdisciplinario tiene como objetivo 

garantizar que las ideas basadas en datos 

conduzcan a intervenciones oportunas y efectivas 

que puedan proteger a las comunidades de los 

impactos adversos de las enfermedades infecciosas 

[9].  

 

 Modelos de series de tiempo 

 

 Los modelos de series de tiempo juegan un papel 

fundamental en la predicción y el análisis de los 

brotes de enfermedades infecciosas. Estos modelos 

aprovechan los datos históricos para pronosticar 

tendencias futuras, ofreciendo ideas que son 

esenciales para la planificación de la salud pública 

y las estrategias de respuesta. Entre los Varias 

metodologías, el modelo de promedio móvil 

integrado autorregresivo (ARIMA) es 

particularmente prominente, ya que captura las 

dependencias únicas que se encuentran en los datos 

de la serie temporal, lo que permite pronósticos 

efectivos de las tendencias epidémicas a corto y 

largo plazo [13]. 

 

 Tipos de modelos de series de tiempo 
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 Arima y sus variantes 

 

 El modelo ARIMA es una técnica estadística 

fundamental que combina la autorregresión (AR), 

la diferencia (I) y los promedios móviles (MA) 

para modelar datos de series temporales no 

estacionarias. Sus parámetros se determinan 

utilizando la metodología Box-Jenkins, que 

implica identificar estructuras de modelo 

apropiadas a través de análisis gráficos y funciones 

de autocorrelación [14]. Variantes como la ARIMA 

estacional (Sarima) se utilizan cuando los datos 

exhiben características estacionales, agregando 

parámetros adicionales para tener en cuenta los 

efectos estacionales [15]. 

 

 Técnicas avanzadas de series de tiempo 

 

 Los desarrollos recientes en técnicas 

computacionales han ampliado el kit de 

herramientas disponible para epidemiólogos. 

Modelos avanzados como el espacio de estado de 

suavizado exponencial (ETS), la descomposición 

estacional y de tendencia utilizando Loess (STLM) 

y TBATS (trigonométrico, Box-Cox, ARMA, 

Trend, Seasonal) están ganando tracción por su 

capacidad para capturar patrones estacionales 

complejos [16], [17].  

 

Los enfoques de aprendizaje automático, incluidos 

los modelos de aprendizaje profundo como las 

redes de memoria a corto plazo a largo plazo 

(LSTM), también se han aplicado para mejorar la 

precisión de la predicción, particularmente cuando 

los métodos estadísticos tradicionales enfrentan 

limitaciones debido a la escasez de datos [18]. 

 

Aplicaciones en pronóstico de enfermedades 

infecciosas 

 

 El modelado de series temporales se ha aplicado 

con éxito a una variedad de enfermedades 

infecciosas, incluidas Covid-19, Dengue e 

influenza. Los estudios han demostrado la utilidad 

de diferentes modelos en el pronóstico de la 

dinámica de la enfermedad, con un enfoque 

específico en los modelos logísticos y gompertz 

que se emplean para las predicciones CoVID-19     

[19]. El uso de tales modelos facilita la 

comprensión de la dinámica de la transmisión y las 

asistencias en formular estrategias de intervención 

efectivas . 

 

Desafíos y consideraciones 

 

 Si bien los modelos de series de tiempo 

proporcionan información valiosa, también 

presentan desafíos. La naturaleza no estacionaria 

de algunos datos de enfermedades infecciosas 

puede complicar el análisis, ya que los coeficientes 

de regresión convencionales pueden no producir 

mejores estimaciones lineales imparciales (azul) 

en tales condiciones. Además, la identificación de 

modelos apropiados requiere una experiencia 

estadística sustancial, que puede ser una barrera 

para algunos profesionales en el campo                         

[20]. 

 

Aplicación de modelos de series de tiempo en 

predicción de enfermedades infecciosas 

 

 Los modelos de series de tiempo juegan un papel 

crucial en la predicción de brotes de enfermedades 

infecciosas, lo que permite a los epidemiólogos 

comprender la dinámica temporal de la 

propagación de la enfermedad e informar las 

intervenciones de salud pública. Un análisis 

comparativo de los métodos estadísticos y 

compartimentales para modelar la progresión de la 

enfermedad infecciosa destaca la efectividad de los 

enfoques de series de tiempo en el pronóstico 

brotes, particularmente en el contexto de la 

pandemia de Covid-19 en curso [2]. 

 

Modelado y pronóstico de Covid-19 

 

Los epidemiólogos han empleado varias técnicas 

de modelado de series temporales para analizar los 

mecanismos de transmisión de CoVID-19, con el 

objetivo de mejorar las medidas de pronóstico y 

control de epidemia. Por ejemplo, Li et al. discutió 
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la importancia de modelar Covid-19 para mejorar 

las estrategias de anticipación y monitoreo de 

pestilencia [21]. 

 

Además, el trabajo de Cori &Kucharski [22] en la 

dinámica de la transmisión primaria a través del 

modelado matemático subraya la importancia de la 

regresión de series de tiempo para comprender el 

comportamiento de la enfermedad con el tiempo. 

 

Técnicas y metodologías 

 

Se han ilustrado diferentes técnicas estadísticas de 

modelado y predicción en el contexto de varias 

enfermedades infecciosas, incluida la Covid-19. 

Estas técnicas abarcan el ajuste de distribución, el 

modelado de series de tiempo y el modelado 

epidemiológico, que son esenciales para predecir 

con precisión Enfermedad diseminada. Cuando 

hay suficientes datos epidemiológicos disponibles, 

los modelos pueden adaptarse a la distribución 

normal u otras distribuciones teóricas para 

seleccionar el mejor ajuste para predecir las tasas 

de infección [23]. 

 

Preparación de datos e imputación 

 

Para construir modelos de series de tiempo 

efectivos, la preparación de datos rigurosas es 

vital. El preprocesamiento de conjuntos de datos 

incluye armonizar datos sin procesar con 

resoluciones espaciales y temporales variadas, 

abordar los valores faltantes a través de técnicas 

como spline y reenviar, y garantizar que se 

conserven características relevantes para el 

modelado [24]. 

 

Estos pasos de preprocesamiento mejoran la 

calidad de los datos de entrada para algoritmos 

como el Minirocket, lo que aprovecha los núcleos 

convolucionales aleatorios para la clasificación de 

series temporales, mejorando así la precisión 

predictiva [10].  

 

Desafíos y direcciones futuras 

 

A pesar de los avances en el modelado de series 

temporales, los desafíos permanecen, 

particularmente en términos de recopilación de 

datos y la necesidad de recursos computacionales 

sólidos. En la integración de fuentes de datos 

basadas en Internet, como las redes sociales y los 

artículos de noticias en línea, puede complementar 

conjuntos de datos tradicionales y mejorar la 

puntualidad y precisión de los pronósticos [25].  

 

A medida que el virus Covid-19 muta, emplear 

estas diversas fuentes de datos puede volverse cada 

vez más crítico para identificar nuevas variantes e 

informar las respuestas de salud pública de manera 

efectiva. Por lo tanto, las inversiones en curso en 

iniciativas de intercambio de datos e 

infraestructura computacional son esenciales para 

aprovechar completamente el potencial de los 

modelos de series de tiempo en el pronóstico de 

enfermedades infecciosas en América Latina y más 

allá [26]. 

 

Desafíos y limitaciones 

 

Calidad y relevancia de los datos 

 

Uno de los desafíos clave en el desarrollo de 

modelos predictivos para los brotes de 

enfermedades infecciosas es garantizar una alta 

calidad y precisión de los datos. La efectividad de 

los sistemas de vigilancia basados en Internet se ve 

profundamente afectada por la calidad de los datos 

y el análisis utilizados [27].  

 

Las mejoras en la precisión de los datos se pueden 

lograr explorando métodos para determinar el de 

un usuario Ubicación geográfica basada en la 

información de su perfil y el uso del idioma en los 

textos. Además, abordar las limitaciones del 

tamaño de la muestra es crítico, ya que los 

algoritmos existentes a menudo aprovechan los 

métodos rudimentarios que son insuficientes para 

la extracción y el análisis de la pandemia en tiempo 

real [28].  
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Especificación del modelo y limitaciones 

algorítmicas 

 

La especificación del modelo reflexivo es otro 

desafío significativo, que requiere un enfoque 

riguroso para abordar diversas críticas a los 

métodos existentes.  A medida que la cantidad de 

datos crece exponencialmente debido al aumento 

del uso de las redes sociales, existe una necesidad 

urgente de algoritmos sofisticados capaces de 

detectar y rastrear con precisión los indicadores de 

enfermedades infecciosas [29].  

 

Los sistemas de vigilancia tradicionales a menudo 

dependen de fuentes de datos convencionales, 

como la Organización Mundial de la Salud (OMS) 

y las agencias de salud locales. Sin embargo, estas 

fuentes pueden ser menos oportunas y sensibles 

debido a los retrasos burocráticos y los altos costos 

asociados con los datos Validación [30].  

 

 

 

Consideraciones éticas y privacidad 

 

Los desafíos emergentes también incluyen 

preocupaciones éticas que rodean el uso de datos 

espaciales, particularmente en relación con las 

ubicaciones y movimientos de los individuos.  

Equilibrar los intereses de salud pública con la 

privacidad individual sigue siendo un aspecto 

crítico de la vigilancia espacial, lo que requiere el 

desarrollo de directrices que respetan la privacidad 

personal y al mismo tiempo proporcionan las ideas 

de salud necesarias [31]. 

 

Integración de datos multiplataforma 

 

Otra limitación es la complejidad de la integración 

de datos multiplataforma. Si bien el uso de las 

redes sociales y otras plataformas basadas en 

Internet para monitorear las tendencias de las 

enfermedades ha demostrado ser efectiva, la 

integración de datos de estas fuentes variadas 

plantea desafíos significativos. Asegurar la 

consistencia y la precisión en diferentes 

plataformas es vital para crear modelos predictivos 

confiables [32]. 

 

Refinamiento continuo de técnicas 

 

La necesidad de un refinamiento continuo de la 

precisión algorítmica es primordial como el campo 

de La predicción de la enfermedad infecciosa 

evoluciona rápidamente. Los avances en 

tecnología crean nuevas oportunidades para 

aprovechar nuevas fuentes de datos y emplear 

técnicas analíticas avanzadas, sin embargo, estos 

avances también requieren una adaptación 

continua de las metodologías existentes para 

mantener su efectividad en la detección y 

pronósticos de brotes por lo que el objetivo de esta 

investigación fue evalaur el uso de series 

temporales para prever brotes de enfermedades 

infecciosas en América  Latina. 

 

2. Materiales y Métodos 

 
2.1 Modelos Estadísticos 

Se usaron métodos Estadísticos y Modelos 

Predictivos Utilizados en el Análisis de Predicción 

de Brotes Epidemiológicos:  

 

Modelo SARIMA (Seasonal Autoregressive 

Integrated Moving Average): componente 

Autoregresivo (AR): Captura la dependencia lineal 

entre observaciones en diferentes momentos. 

 

Componente de Diferenciación (I): Elimina 

tendencias y estacionalidad mediante 

diferenciación. 

 

Componente de Media Móvil (MA): Modela el 

error del modelo como una combinación lineal de 

errores anteriores. 

 

Componente Estacional: Incorpora patrones 

cíclicos anuales en los datos epidemiológicos. 

 

Red Neuronal Recurrente (NNAAR - Neural 

Network Autoregressive): Arquitectura LSTM 

(Long Short-Term Memory): Red neuronal 
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recurrente diseñada para manejar series temporales 

con dependencias a largo plazo. 

 

Estructura de la red 

 

Capa LSTM con 32 unidades (capa de entrada), 

capa LSTM con 16 unidades (capa intermedia), 

capa densa con 8 unidades (capa oculta), capa de 

salida con una unidad función de activación: 

Tangente hiperbólica (tanh) en capas LSTM y 

ReLU en capa intermedia, optimizador: Adam con 

tasa de aprendizaje reducida (0.0005) y función de 

pérdida: Error Cuadrático Medio (MSE). 

 

Modelo Híbrido SARIMA + NNAAR 

 

Enfoque de dos etapas que combina las fortalezas 

de ambos modelos: SARIMA  que capturo 

patrones lineales y estacionales, NNAAR que 

modelo patrones no lineales y dependencias a largo 

plazo La predicción final se obtuvo sumando las 

predicciones del SARIMA y las correcciones de la 

NNAAR. 

 

 

 

Métricas de Evaluación 

 

Error Cuadrático Medio (RMSE): Mide la 

magnitud de los errores de predicción, error 

Absoluto Medio (MAE): Mide la magnitud media 

de los errores, error Porcentual Absoluto Medio 

(MAPE): Mide el error relativo de las predicciones 

y coeficiente de Determinación (R²): Mide la 

proporción de varianza explicada por el modelo. 

 

Proceso de Validación 

 

División de datos: 80% para entrenamiento y 20% 

para prueba, validación cruzada implícita mediante 

el conjunto de prueba y análisis de residuos para 

verificar supuestos del modelo. 

 

Técnicas de Preprocesamiento 

 

Manejo de secuencias temporales: Preparación de 

secuencias de entrada con un lookback de 7 días e 

incorporación de residuos: Uso de residuos del 

SARIMA como características adicionales para la 

NNAAR. 

 

Este enfoque metodológico combino técnicas 

estadísticas tradicionales con aprendizaje 

profundo, proporcionando un marco robusto para 

la predicción de brotes epidemiológicos que puede 

capturar tanto patrones lineales como no lineales 

en los datos. 

 

2.2 Datos utilizados 

 

La base de datos utilizada en este análisis es una 

simulación sintética diseñada para modelar 

patrones epidemiológicos realistas. La base de 

datos consta de 1,000 registros diarios, cubriendo 

aproximadamente 27 años de datos (desde el 1 de 

enero de 1998 hasta el 31 de diciembre de 2024), 

con una frecuencia de muestreo diaria. 

 

Estructura de la Base de Datos: incidencia de 

Enfermedad (Variable Objetivo): Tasa de 

incidencia diaria por cada 100,000 habitantes, 

valores simulados entre 0.5 y 2 casos por 100,000 

habitantes que incluye patrones estacionales y 

eventos de brote aleatorios. 

 

Variables Predictivas (Características): móvil 

(Movilidad): Índice de movilidad poblacional 

(0.05-0.15), temperatura: Temperatura ambiente en 

grados Celsius (20-30°C), humedad: Porcentaje de 

humedad relativa (30-90% y precipitación: 

Cantidad diaria de precipitación en milímetros (0-

200mm). 

 

Características de la Simulación: patrón 

Estacional: Componente estacional anual con 

variaciones periódicas: eventos de Brote: Inclusión 

de brotes aleatorios con probabilidad del 5%, ruido 

Aleatorio (Variabilidad intrínseca en las 

mediciones) y correlación Temporal: (estructura de 

autocorrelación en los datos). 
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La base de datos fue sido diseñada para reflejar 

patrones epidemiológicos realistas, incluyendo: 

variaciones estacionales en la incidencia de 

enfermedades, impacto de factores ambientales 

(climáticos y de movilidad), eventos de brote 

aleatorios y estructura temporal coherente. 

 

La simulación se ha generado utilizando una 

semilla aleatoria fija (42) para garantizar 

reproducibilidad en los resultados. Los datos han 

sido divididos en conjuntos de entrenamiento 

(80%) y prueba (20%) para la validación del 

modelo predictivo. 

Esta base de datos sintética proporciono un entorno 

controlado para evaluar y optimizar los modelos de 

predicción de brotes epidemiológicos, permitiendo 

un análisis riguroso de las capacidades predictivas 

de diferentes enfoques analíticos. 

 

3. Resultados  
 

La evaluación del modelo SARIMA revela un 

rendimiento moderado en la predicción de las tasas 

de incidencia. El error cuadrático medio (RMSE) 

obtenido fue de 1.5515, lo que indica un nivel 

aceptable de precisión, mientras que el error 

absoluto medio (MAE) se mantuvo en 0.8690, 

sugiriendo que las desviaciones promedio en las 

predicciones fueron inferiores a un caso por cada 

100,000 habitantes.  

 

El porcentaje de error absoluto medio (MAPE) fue 

de 1.0907%, lo que confirma una precisión relativa 

moderada. Sin embargo, el coeficiente de 

determinación (R²) fue de -0.0054, lo que refleja 

que el modelo prácticamente no explica la 

variabilidad de los datos, limitando su utilidad 

explicativa. Por otro lado, la evaluación del 

modelo híbrido SARIMA combinado con una red 

neuronal autorregresiva no lineal (NNAAR) 

mostró un desempeño inferior al modelo SARIMA 

puro ( Figura 1). 

 

  
Fig 1. Comparación del modelo híbrido SARIMA 

combinado con una red neuronal autorregresiva no 

lineal (NNAAR) con modelo SARIMA. 

 

El RMSE se incrementó hasta 2.3422 y el MAE 

alcanzó 2.1979, evidenciando errores de 

predicción más pronunciados. Asimismo, el 

MAPE ascendió a 2.5792%, indicando una pérdida 

significativa de precisión relativa. El valor de R² 

fue aún más negativo (-1.2912), lo cual sugiere que 

la integración de ambos modelos no solo no mejora 

la predicción, sino que incluso empeora la 

capacidad explicativa. 

 

En el análisis de los residuos y la capacidad 

predictiva, se observa que el modelo SARIMA 

( Figura 2), a pesar de su simplicidad, mantiene un 

comportamiento estable en el tiempo, con errores 

sistemáticamente contenidos. En cambio, el 

modelo híbrido no logra capitalizar los residuos del 

SARIMA ni incorpora de manera efectiva patrones 

no lineales a través de la red neuronal, lo que se 

traduce en un deterioro del rendimiento global. 

 

 
Fig 2. Capacidad predictiva de modelo Sarima. 
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En cuanto a las métricas de entrenamiento, la 

pérdida observada en el modelo NNAAR presenta 

una disminución progresiva en las primeras épocas 

(Figura 3), lo que indica que el modelo está 

aprendiendo, aunque de forma lenta. La curva de 

aprendizaje sugiere que el modelo podría estar 

subentrenado, lo cual limita su capacidad de 

generalización y predicción. 

 
Fig 3. Métricas de entrenamiento del modelo 

NNAAR. 

 

4. Discusión  
 

La evaluación del modelo SARIMA aplicado a 

series temporales epidemiológicas indica un 

rendimiento moderado en la predicción de las tasas 

de incidencia [15]. Aunque las métricas de error 

como el RMSE (1.5515) y el MAE (0.8690) 

sugieren que el modelo logra mantener 

desviaciones contenidas en el tiempo, el valor 

negativo del coeficiente de determinación (R² = -

0.0054) denota una escasa capacidad explicativa 

sobre la variabilidad observada.  

 

Este hallazgo es consistente con lo señalado por  

quienes advierten que, si bien los modelos 

SARIMA son útiles para capturar estacionalidades 

y patrones lineales, su desempeño puede ser 

limitado cuando los datos presentan complejidades 

estructurales o no linealidades subyacentes [33], 

[34]. 

 

En comparación, el modelo híbrido SARIMA 

combinado con redes neuronales autorregresivas 

no lineales (NNAAR) mostró un desempeño 

inferior, evidenciado por un aumento significativo 

en los errores (RMSE = 2.3422; MAE = 2.1979; 

MAPE = 2.5792%) y un R² aún más negativo (-

1.2912). A pesar de que se ha demostrado que las 

arquitecturas híbridas pueden mejorar las 

predicciones al incorporar patrones no lineales, en 

este caso, la integración con la red neuronal no solo 

no contribuyó positivamente, sino que deterioró el 

rendimiento del modelo global. Esto podría 

explicarse, como sugieren algunos autores, por una 

mala calibración de los hiperparámetros o una 

subutilización de los residuos del modelo 

SARIMA, los cuales no aportaron información 

adicional relevantes [35], [36].  

 

El análisis de las curvas de entrenamiento del 

componente NNAAR mostró una disminución 

progresiva de la función de pérdida, pero a un 

ritmo lento, lo que sugiere un posible 

subentrenamiento del modelo. los modelos 

neuronales aplicados a predicción epidemiológica 

requieren un ajuste fino y suficientes épocas de 

entrenamiento para capturar dinámicas complejas  

[37].  

 

En este sentido, la arquitectura utilizada podría no 

haber sido óptima para el tipo de serie temporal 

analizada, o bien los patrones no lineales presentes 

en los datos eran poco relevantes, como se ha 

observado en estudios similares sobre 

enfermedades emergentes con estructuras más 

estacionarias [38]. 

 

Adicionalmente, se ha reportado que la 

predictibilidad de los brotes infecciosos depende 

no solo del modelo utilizado, sino también de la 

calidad y la granularidad de los datos, así como del 

comportamiento intrínseco del patógeno. La 

incapacidad del modelo híbrido para superar el 

rendimiento del modelo SARIMA también podría 

indicar que los datos utilizados no contenían 

suficientes señales no lineales que justificaran la 

complejidad añadida del modelo neuronal [39], 

[40].  
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En conjunto, estos resultados refuerzan la 

necesidad de una cuidadosa selección de modelos 

y estructuras híbridas al abordar fenómenos 

epidemiológicos. Una estrategia robusta de 

predicción requiere la integración óptima de 

modelos estadísticos tradicionales con enfoques de 

inteligencia artificial, siempre acompañada de una 

evaluación crítica del valor añadido de cada 

componente [41]. 

 

5. Conclusiones 
 

Los resultados obtenidos en esta evaluación 

comparativa revelan que, si bien el modelo 

SARIMA presenta limitaciones en cuanto a su 

capacidad explicativa, evidenciada por un 

coeficiente de determinación negativo, mantiene 

un desempeño aceptable en términos de precisión 

predictiva. Las métricas de error relativamente 

bajas sugieren que este enfoque, basado en 

componentes lineales y estacionales, logra capturar 

adecuadamente la dinámica general de la serie 

temporal de incidencia epidemiológica. 

 

En contraste, la incorporación de una red neuronal 

autorregresiva (NNAAR) en un modelo híbrido no 

se tradujo en mejoras significativas, sino más bien 

en un deterioro del rendimiento. Este hallazgo 

sugiere que la combinación de modelos 

estadísticos con técnicas de aprendizaje profundo 

no garantiza automáticamente una mejor 

capacidad predictiva, especialmente cuando los 

residuos del modelo base no contienen patrones no 

lineales aprovechables o cuando la arquitectura 

neuronal no está debidamente ajustada. Además, la 

lenta convergencia observada en el entrenamiento 

de la NNAAR apunta a un posible 

subentrenamiento y subutilización de su potencial. 

 

En conjunto, estos resultados ponen de manifiesto 

que la selección de modelos para la predicción de 

brotes epidemiológicos debe estar guiada no solo 

por la sofisticación de la técnica, sino por su 

adecuación a la estructura de los datos. El modelo 

SARIMA, a pesar de su simplicidad, demostró una 

mayor estabilidad y eficiencia predictiva que su 

contraparte híbrida. Se recomienda, por tanto, una 

evaluación rigurosa del valor añadido que pueden 

ofrecer las técnicas híbridas, así como una 

optimización más exhaustiva de sus parámetros 

antes de su implementación en sistemas de 

vigilancia epidemiológica. 
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