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Abstract.- This study analyzes the predictive effectiveness of time series models applied to infectious disease 

outbreaks in Latin America, using a data science approach. Two approaches were compared: the seasonal SARIMA 

model and a hybrid SARIMA + NNAAR (Autoregressive Neural Network) model. The results show that, although 

SARIMA presents limited explanatory power (negative R²), it maintains acceptable performance in terms of error 

(RMSE=1.55; MAE=0.87). In contrast, the hybrid model showed inferior performance, with higher errors and an 

even more negative R², indicating that the incorporation of a neural network does not necessarily improve the system's 

predictive capacity. The learning curve of the NNAAR model suggests possible undertraining, reinforcing the need 

for careful calibration when integrating complex models. The study highlights the importance of selecting models 

based on data structure, beyond technical sophistication, and recommends methodological optimizations before 

implementing hybrid models in epidemiological surveillance systems. This analysis, based on realistic simulated 

data, underscores the value of time series methodologies for disease prediction and public health decision-making. 
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Resumen.- Este estudio analiza la eficacia predictiva de modelos de series temporales aplicados a brotes de 

enfermedades infecciosas en América Latina, empleando un enfoque de ciencia de datos. Se compararon dos 

enfoques: el modelo estacional SARIMA y un modelo híbrido SARIMA + NNAAR (Red Neuronal Autorregresiva). 

Los resultados muestran que, aunque SARIMA presenta una limitada capacidad explicativa (R² negativo), mantiene 

un desempeño aceptable en términos de error (RMSE=1.55; MAE=0.87). Por el contrario, el modelo híbrido mostró 

un rendimiento inferior, con errores más altos y un R² aún más negativo, lo que indica que la incorporación de una 

red neuronal no mejora necesariamente la capacidad predictiva del sistema. La curva de aprendizaje del modelo 

NNAAR sugiere un posible subentrenamiento, reforzando la necesidad de una cuidadosa calibración cuando se 

integran modelos complejos. El estudio destaca la importancia de seleccionar modelos según la estructura de los 

datos, más allá de la sofisticación técnica, y recomienda optimizaciones metodológicas antes de implementar modelos 

híbridos en sistemas de vigilancia epidemiológica. Este análisis, basado en datos simulados realistas, subraya el valor 

de las metodologías de series temporales para la predicción de enfermedades y la toma de decisiones en salud pública. 
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1. Introducción 
Time series models for predicting infectious dis-

ease outbreaks in Latin America represent a critical 
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area of study that integrates data science tech-

niques with epidemiological practices to enhance 

public health responses to infectious disease 

threats. As the region grapples with numerous pub-

lic health challenges, including outbreaks of dis-

eases such as COVID-19, dengue, and influenza, 

the application of time series models has become a 

vital tool for forecasting disease dynamics and 

guiding effective interventions [1]. 

These models use historical data to identify pat-

terns and predict future outbreaks, supporting 

health officials in their decision-making processes 

and resource allocation. The importance of using 

time series models lies in their ability to deliver 

real-time insights that are essential to mitigate the 

impact of infectious diseases [2]. 

Traditional public health surveillance methods of-

ten face delays and inaccuracies, necessitating a 

shift toward more advanced analytical techniques 

that can leverage diverse data sources, including 

social media and online health reports.  

In particular, models such as the Autoregressive 

Integrated Moving Average (ARIMA) and its var-

iants have gained prominence for their robustness 

in capturing the intricate temporal dependencies 

characteristic of infectious disease data, enabling 

both short- and long-term forecasting. Despite ad-

vances in modeling techniques, several challenges 

persist, including issues related to data quality, eth-

ical concerns surrounding privacy, and the integra-

tion of heterogeneous data sources [3]. 

Critics have pointed out that the non-stationary na-

ture of some infectious disease data complicates 

accurate modeling, while issues concerning data 

accuracy and model specification continue to pose 

barriers to effective prediction [4]. 

Additionally, the evolving landscape of diseases 

and their transmission dynamics underscores the 

importance of ongoing collaboration among re-

searchers, public health officials, and data scien-

tists to refine these models and ensure their ap-

plicability in real-world scenarios [5]. 

Therefore, the application of time series models to 

predict infectious disease outbreaks in Latin Amer-

ica represents a significant intersection of data sci-

ence and public health, with the potential to trans-

form epidemic forecasting and response strategies 

[6]. As the field advances, addressing existing lim-

itations and enhancing the methodological rigor of 

these models will be crucial to protecting commu-

nities and improving public health outcomes in the 

face of emerging infectious disease threats. 

In recent years, the global public health landscape 

has been significantly shaped by the emergence of 

infectious diseases and the threat of bioterrorism. 

The COVID-19 pandemic, along with outbreaks of 

diseases such as SARS and influenza, has high-

lighted the critical importance of robust public 

health surveillance systems for national security 

and community well-being [7]. 

These systems now increasingly rely on real-time 

data from various sources, including clinical envi-

ronments and telehealth centers, enabling public 

health agencies to respond more effectively to po-

tential outbreaks [8]. 

Infectious diseases emerge when pathogens infect 

individuals, leading to adverse health outcomes 

and posing risks to society. Early detection and 

monitoring of these outbreaks are essential to re-

duce mortality rates and control the spread of dis-

ease. To this end, many countries have developed 

comprehensive infectious disease surveillance 

mechanisms. These systems involve collaboration 

among clinical healthcare providers, local and state 

health agencies, federal institutions, academic 

groups, and various governmental entities [9]. 

Moreover, modern technologies such as social me-

dia and search engines are being used as innovative 
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tools to track disease trends, complementing tradi-

tional data sources such as hospital records and la-

boratory results [9]. 

Historically, disease outbreak detection has been 

hindered by challenges related to the timeliness 

and specificity of conventional data sources, which 

can suffer from bureaucratic delays and high re-

source demands [9]. 

As a result, public health officials are increasingly 

turning to machine learning and data science tech-

niques to improve real-time predictions of disease 

outbreaks. For example, recent studies have 

demonstrated the effectiveness of various machine 

learning models, such as Support Vector Machines 

(SVM) and Deep Neural Networks (DNN), in lev-

eraging media reports to detect early signs of in-

fectious disease outbreaks, achieving remarkable 

levels of accuracy [9], [10]. 

The complexities of infectious disease epidemiol-

ogy further complicate outbreak detection efforts. 

Epidemiological factors—including mode of 

transmission, latency periods, and the presence of 

asymptomatic carriers—must be carefully ana-

lyzed to understand disease dynamics within pop-

ulations. In addition, variability in public health re-

sponse and healthcare infrastructure across differ-

ent regions requires tailored approaches to disease 

surveillance and intervention strategies[11]. 

As the field of epidemiology continues to evolve, 

there remains a constant need for collaboration be-

tween researchers, public health officials, and data 

scientists to improve outbreak prediction models 

and integrate them into practical public health de-

cision-making processes [12]. 

This interdisciplinary approach aims to ensure that 

data-driven insights lead to timely and effective in-

terventions that can protect communities from the 

adverse impacts of infectious diseases [9]. 

Time Series Models 

Time series models play a fundamental role in the 

prediction and analysis of infectious disease out-

breaks. These models leverage historical data to 

forecast future trends, providing insights essential 

for public health planning and response strategies. 

Among various methodologies, the Autoregressive 

Integrated Moving Average (ARIMA) model is 

particularly prominent, as it captures the unique 

dependencies found in time series data, enabling 

effective short- and long-term epidemic trend fore-

casting [13]. 

Types of Time Series Models 

 

ARIMA and its Variants 

The ARIMA model is a foundational statistical 

technique that combines autoregression (AR), dif-

ferencing (I), and moving averages (MA) to model 

non-stationary time series data. Its parameters are 

determined using the Box-Jenkins methodology, 

which involves identifying appropriate model 

structures through graphical analysis and autocor-

relation functions [14]. Variants such as Seasonal 

ARIMA (SARIMA) are used when data exhibit 

seasonal characteristics, adding parameters to ac-

count for seasonal effects [15]. 

Advanced Time Series Techniques 

 

Recent developments in computational techniques 

have expanded the toolbox available to epidemiol-

ogists. Advanced models such as Exponential 

Smoothing State Space Models (ETS), Seasonal 

and Trend decomposition using Loess (STLM), 

and TBATS (Trigonometric, Box-Cox, ARMA, 

Trend, Seasonal) are gaining traction for their abil-

ity to capture complex seasonal patterns [16], [17]. 

Machine learning approaches, including deep 

learning models such as Long Short-Term Memory 

(LSTM) networks, have also been applied to im-

prove prediction accuracy, particularly when tradi-

tional statistical methods face limitations due to 

data scarcity [18]. 
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Applications in Infectious Disease Forecasting 

Time series modeling has been successfully ap-

plied to a variety of infectious diseases, including 

COVID-19, dengue, and influenza. Studies have 

demonstrated the utility of different models in 

forecasting disease dynamics, with specific em-

phasis on logistic and Gompertz models used for 

COVID-19 predictions [19]. The use of such mod-

els facilitates understanding of transmission dy-

namics and assists in formulating effective inter-

vention strategies. 

Challenges and Considerations 

 

While time series models provide valuable in-

sights, they also present challenges. The non-sta-

tionary nature of some infectious disease data can 

complicate analysis, as conventional regression co-

efficients may fail to produce the best linear unbi-

ased estimators (BLUE) under such conditions. 

Additionally, identifying appropriate models re-

quires substantial statistical expertise, which may 

be a barrier for some professionals in the field [20]. 

 

Application of Time Series Models in Infectious 

Disease Prediction 

 

Time series models play a crucial role in predicting 

infectious disease outbreaks, enabling epidemiolo-

gists to understand the temporal dynamics of dis-

ease spread and inform public health interventions. 

A comparative analysis of statistical and compart-

mental methods for modeling infectious disease 

progression highlights the effectiveness of time se-

ries approaches in outbreak forecasting, particu-

larly in the context of the ongoing COVID-19 pan-

demic [2]. 

 

Modeling and Forecasting COVID-19 

 

Epidemiologists have employed various time se-

ries modeling techniques to analyze COVID-19 

transmission mechanisms, aiming to improve epi-

demic forecasting and control measures. For exam-

ple, Li et al. discussed the importance of modeling 

COVID-19 to enhance preparedness and monitor-

ing strategies [21]. 

Furthermore, the work of Cori & Kucharski [22] 

on the dynamics of primary transmission through 

mathematical modeling underscores the im-

portance of time series regression for understand-

ing disease behavior over time. 

Techniques and Methodologies 

 

Different statistical modeling and forecasting tech-

niques have been illustrated in the context of vari-

ous infectious diseases, including COVID-19. 

These techniques encompass distribution fitting, 

time series modeling, and epidemiological model-

ing, which are essential for accurately predicting 

disease spread. When sufficient epidemiological 

data are available, models can be fitted to normal 

or other theoretical distributions to select the best 

fit for predicting infection rates [23]. 

 

Data Preparation and Imputation 

 

Building effective time series models requires rig-

orous data preparation. Preprocessing of datasets 

includes harmonizing raw data with varying spatial 

and temporal resolutions, addressing missing val-

ues through techniques such as spline interpolation 

and forward fill, and ensuring that relevant features 

are retained for modeling [24]. 

 

These preprocessing steps enhance the input data 

quality for algorithms like MiniRocket, which lev-

erages random convolutional kernels for time se-

ries classification, thereby improving predictive 

accuracy [10]. 

Challenges and Future Directions 

 

Despite advances in time series modeling, chal-

lenges remain, particularly regarding data collec-

tion and the need for robust computational re-

sources. The integration of internet-based data 
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sources such as social media and online news arti-

cles can complement traditional datasets and en-

hance the timeliness and accuracy of forecasts 

[25]. 

As the COVID-19 virus mutates, employing these 

diverse data sources may become increasingly crit-

ical to identify new variants and effectively inform 

public health responses. Therefore, ongoing in-

vestments in data-sharing initiatives and computa-

tional infrastructure are essential to fully harness 

the potential of time series models in forecasting 

infectious diseases in Latin America and beyond 

[26]. 

Challenges and Limitations 

Data Quality and Relevance 

 

One of the key challenges in developing predictive 

models for infectious disease outbreaks is ensuring 

high data quality and accuracy. The effectiveness 

of internet-based surveillance systems is deeply af-

fected by the quality of data and analyses used 

[27]. 

Improvements in data accuracy can be achieved by 

exploring methods to determine a user's geo-

graphic location based on profile information and 

language usage in text. Additionally, addressing 

sample size limitations is critical, as existing algo-

rithms often rely on rudimentary methods that are 

inadequate for real-time pandemic data extraction 

and analysis [28]. 

Model Specification and Algorithmic Limita-

tions 

Thoughtful model specification is another major 

challenge, requiring a rigorous approach to address 

various critiques of existing methods. As data vol-

ume grows exponentially due to increased social 

media use, there is an urgent need for sophisticated 

algorithms capable of accurately detecting and 

tracking infectious disease indicators [29]. 

Traditional surveillance systems often rely on con-

ventional data sources, such as the World Health 

Organization (WHO) and local health agencies. 

However, these sources may be less timely and 

sensitive due to bureaucratic delays and high data 

validation costs [30]. 

Ethical Considerations and Privacy 

 

Emerging challenges also include ethical concerns 

surrounding the use of spatial data, particularly re-

garding individuals’ locations and movements. 

Balancing public health interests with individual 

privacy remains a critical aspect of spatial surveil-

lance, requiring the development of guidelines that 

respect personal privacy while providing necessary 

health insights [31]. 

 

Multiplatform Data Integration 

 

Another limitation is the complexity of integrating 

multiplatform data. While using social media and 

other internet-based platforms to monitor disease 

trends has proven effective, integrating data from 

these varied sources poses significant challenges. 

Ensuring consistency and accuracy across plat-

forms is vital to creating reliable predictive models 

[32]. 

 

Ongoing Refinement of Techniques 

 

Continuous refinement of algorithmic accuracy is 

paramount as the field of infectious disease predic-

tion rapidly evolves. Advances in technology cre-

ate new opportunities to leverage novel data 

sources and employ advanced analytical tech-

niques. However, these advances also demand con-

stant adaptation of existing methodologies to main-

tain their effectiveness in outbreak detection and 

forecasting. Thus, the objective of this study was 

to evaluate the use of time series models to forecast 

infectious disease outbreaks in Latin America. 

2. Materials and Methods 

2.1 Statistical Models 

https://doi.org/10.70577/9j5qky84
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Statistical methods and predictive models were 

used in the analysis of epidemiological outbreak 

prediction: 

SARIMA Model (Seasonal Autoregressive Inte-

grated Moving Average): Autoregressive Compo-

nent (AR): Captures linear dependence between 

observations at different time points. 

Differencing Component (I): Removes trends and 

seasonality through differencing. 

Moving Average Component (MA): Models the 

model error as a linear combination of past errors. 

Seasonal Component: Incorporates annual cyclic 

patterns into the epidemiological data. 

Neural Network Autoregressive Model 

(NNAAR)LSTM Architecture (Long Short-Term 

Memory): A recurrent neural network designed to 

handle time series with long-term dependencies. 

Network Structure 

LSTM layer with 32 units (input layer), LSTM 

layer with 16 units (middle layer), dense layer with 

8 units (hidden layer), output layer with one unit 

activation function: Hyperbolic tangent (tanh) in 

LSTM layers and ReLU in middle layer, optimizer: 

Adam with reduced learning rate (0.0005) and loss 

function: Mean Square Error (MSE). 

Hybrid Model SARIMA + NNAAR 

A two-stage approach that combines the strengths 

of both models: 

SARIMA captures linear and seasonal patterns, 

while NNAAR models non-linear patterns and 

long-term dependencies. The final prediction is ob-

tained by summing the SARIMA forecasts and the 

corrections from the NNAAR. 

Evaluation Metrics 

Root Mean Square Error (RMSE): Measures the 

magnitude of the prediction errors, Mean Absolute 

Error (MAE): Measures the average magnitude of 

the errors, Mean Absolute Percentage Error 

(MAPE): Measures the relative error of the predic-

tions and Coefficient of Determination (R²): 

Measures the proportion of variance explained by 

the model. 

Validation Process 

Data split: 80% for training and 20% for testing, 

implicit cross-validation using the test set, and re-

sidual analysis to verify model assumptions. 

Preprocessing Techniques 

Handling time sequences: Preparing input se-

quences with a 7-day lookback and incorporating 

residuals: Using SARIMA residuals as additional 

features for NNAAR. 

This methodological approach combines tradi-

tional statistical techniques with deep learning, 

providing a robust framework for predicting epide-

miological outbreaks by capturing both linear and 

non-linear patterns in the data. 

2.2 Data Used 

The database used in this analysis is a synthetic 

simulation designed to model realistic epidemio-

logical patterns. The database consists of 1,000 

daily records, covering approximately 27 years of 

data (from January 1, 1998, to December 31, 

2024), with a daily sampling frequency. 

 

Database Structure: Disease Incidence (Target 

Variable): Daily incidence rate per 100,000 popu-

lation, simulated values between 0.5 and 2 cases 

per 100,000 population, including seasonal pat-

terns and random outbreak events. 

Predictor Variables (Characteristics): Mobile (Mo-

bility): Population mobility index (0.05-0.15), 

Temperature: Ambient temperature in degrees Cel-

sius (20-30°C), Humidity: Percentage of relative 
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humidity (30-90%), and Precipitation: Daily pre-

cipitation amount in millimeters (0-200mm). 

Simulation Characteristics: Seasonal pattern: An-

nual seasonal component with periodic variations; 

Outbreak events: Inclusion of random outbreaks 

with a 5% probability; Random noise (intrinsic 

variability in measurements); and Temporal corre-

lation (autocorrelation structure in the data). 

The database was designed to reflect realistic epi-

demiological patterns, including: seasonal varia-

tions in disease incidence, impact of environmental 

factors (climate and mobility), random outbreak 

events, and a consistent temporal structure. 

The simulation was generated using a fixed ran-

dom seed (42) to ensure reproducibility of the re-

sults. The data were divided into sets. training 

(80%) and testing (20%) for predictive model val-

idation. 

This synthetic database provided a controlled envi-

ronment for evaluating and optimizing epidemio-

logical outbreak prediction models, allowing for 

rigorous analysis of the predictive capabilities of 

different analytical approaches. 

3. Results 

The evaluation of the SARIMA model reveals 

moderate performance in predicting incidence 

rates. The Root Mean Squared Error (RMSE) ob-

tained was 1.5515, indicating an acceptable level 

of accuracy, while the Mean Absolute Error 

(MAE) remained at 0.8690, suggesting that the av-

erage deviations in the predictions were less than 

one case per 100,000 inhabitants. 

The Mean Absolute Percentage Error (MAPE) was 

1.0907%, confirming a moderate relative accuracy. 

However, the coefficient of determination (R²) was 

-0.0054, indicating that the model virtually fails to 

explain the variability in the data, which limits its 

explanatory usefulness. On the other hand, the 

evaluation of the hybrid model combining 

SARIMA with a nonlinear autoregressive neural 

network (NNAAR) showed poorer performance 

than the standalone SARIMA model (Figure 1). 

 
 

Fig 1. Comparison of the hybrid SARIMA model 

combined with a nonlinear autoregressive neural 

network (NNAAR) versus the standalone 

SARIMA model. 

The RMSE increased to 2.3422 and the MAE 

reached 2.1979, indicating more pronounced pre-

diction errors. Similarly, the MAPE rose to 

2.5792%, signaling a significant loss in relative ac-

curacy. The R² value was even more negative (-

1.2912), suggesting that integrating both models 

not only fails to improve prediction but actually 

worsens explanatory power. 

In the analysis of residuals and predictive perfor-

mance, it is observed that the SARIMA model 

(Figure 2), despite its simplicity, maintains stable 

behavior over time, with consistently contained er-

rors. In contrast, the hybrid model fails to capital-

ize on the SARIMA residuals or effectively incor-

porate nonlinear patterns through the neural net-

https://doi.org/10.70577/9j5qky84
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work, resulting in an overall decline in perfor-

mance.

 

Fig 2. Predictive Performance of the SARIMA 

Model. 

Regarding the training metrics, the loss observed 

in the NNAAR model shows a progressive de-

crease during the initial epochs (Figure 3), indicat-

ing that the model is learning, albeit slowly. The 

learning curve suggests that the model may be un-

dertrained, which limits its ability to generalize and 

predict effectively. 

 
 

Fig 3. Training metrics of the NNAAR model. 

4. Discussion  

The evaluation of the SARIMA model applied to 

epidemiological time series indicates a moderate 

performance in predicting incidence rates [15]. 

Although error metrics such as RMSE (1.5515) 

and MAE (0.8690) suggest that the model main-

tains contained deviations over time, the negative 

coefficient of determination (R² = -0.0054) denotes 

a limited explanatory capacity regarding the ob-

served variability. 

This finding aligns with observations by authors 

who warn that while SARIMA models are useful 

for capturing seasonality and linear patterns, their 

performance can be limited when data present un-

derlying structural complexities or non-linearities 

[33], [34]. 

In comparison, the hybrid model combining 

SARIMA with nonlinear autoregressive neural 

networks (NNAAR) showed inferior performance, 

evidenced by a significant increase in errors 

(RMSE = 2.3422; MAE = 2.1979; MAPE = 

2.5792%) and an even more negative R² (-1.2912). 

Although hybrid architectures have been shown to 

improve predictions by incorporating nonlinear 

patterns, in this case, the integration with the neural 

network not only failed to contribute positively but 

worsened the overall model performance. This 

could be explained, as some authors suggest, by 

poor hyperparameter tuning or underutilization of 

SARIMA residuals, which did not provide relevant 

additional information [35], [36]. 

The analysis of the training curves for the NNAAR 

component showed a progressive decrease in the 

loss function, but at a slow pace, suggesting possi-

ble undertraining of the model. Neural models ap-

plied to epidemiological prediction require fine-

tuning and sufficient training epochs to capture 

complex dynamics [37]. 

In this regard, the architecture used might not have 

been optimal for the type of time series analyzed, 

or the nonlinear patterns present in the data were 

not significant, as observed in similar studies on 

emerging diseases with more stationary structures 

[38]. 

Additionally, it has been reported that the predict-

ability of infectious outbreaks depends not only on 

the model used but also on data quality, granular-

ity, and the intrinsic behavior of the pathogen. The 

hybrid model’s failure to outperform the SARIMA 
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model may also indicate that the data lacked suffi-

cient nonlinear signals to justify the added com-

plexity of the neural model [39], [40]. 

Together, these results reinforce the need for care-

ful model and hybrid structure selection when ad-

dressing epidemiological phenomena. A robust 

prediction strategy requires the optimal integration 

of traditional statistical models with artificial intel-

ligence approaches, always accompanied by a crit-

ical evaluation of the added value of each compo-

nent [41]. 

5. Conclusions 

The results obtained in this comparative evaluation 

reveal that while the SARIMA model shows limi-

tations in its explanatory capacity, evidenced by a 

negative coefficient of determination, it maintains 

acceptable performance in terms of predictive ac-

curacy. The relatively low error metrics suggest 

that this approach, based on linear and seasonal 

components, adequately captures the general dy-

namics of the epidemiological incidence time se-

ries. 

In contrast, the incorporation of an autoregressive 

neural network (NNAAR) in a hybrid model did 

not lead to significant improvements but rather to 

a deterioration in performance. This finding sug-

gests that combining statistical models with deep 

learning techniques does not automatically guaran-

tee better predictive capacity, especially when the 

residuals of the base model do not contain exploit-

able nonlinear patterns or when the neural architec-

ture is not properly tuned. Furthermore, the slow 

convergence observed in training the NNAAR 

points to possible undertraining and underutiliza-

tion of its potential. 

Overall, these results highlight that model selec-

tion for epidemiological outbreak prediction 

should be guided not only by the sophistication of 

the technique but by its suitability to the data struc-

ture. The SARIMA model, despite its simplicity, 

demonstrated greater stability and predictive effi-

ciency than its hybrid counterpart. Therefore, a rig-

orous evaluation of the added value of hybrid tech-

niques is recommended, as well as more exhaus-

tive parameter optimization before their imple-

mentation in epidemiological surveillance sys-

tems. 
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